Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 44(8): e2200951, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36700516

RESUMO

Lyotropic liquid crystalline (LC) nanomaterials are normally achieved through particle shape anisotropy. Herein, it is shown that lyotropic nematic rather than cubic phases are produced from spherical nanoparticles (NPs) with semi-flexible polymer ligands. ZrO2 nanocrystals (4 nm dia.) are coated with a dense shell of poly(hexyl isocyanate) (PHIC), a helical rod-like polymer that forms lyotropic LC phases in a range of organic solvents. Solvent casted NPs with PHIC ligands above the persistence length form linear assemblies, separated by a characteristic distance related to the chain length while NPs with shorter, rigid rod PHIC ligands pack hexagonally. Concentrated NP-PHIC dispersions present nematic textures similar to the free PHIC nematic solutions but at lower critical concentrations, widening the isotropic-nematic biphasic region. 2 H NMR spectra of the NPs dispersed in a deuterated solvent display quadrupolar splittings that increase with NP concentration, showing that the PHIC ligands are magnetically aligned. The high degree of orientation order is evidence that splaying of the ligand shell transforms the spherical NPs to rod-like shapes that assemble to produce nematic lyotropic LC phases and linear NP arrays. This approach to creating anisotropic assemblies can be extended to other types of spherical NPs and semiflexible polymers.


Assuntos
Cristais Líquidos , Nanopartículas , Polímeros , Ligantes , Solventes , Cristais Líquidos/química
2.
ACS Nano ; 16(12): 20116-20128, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36411252

RESUMO

Spontaneous phase separation in binary mixed ligand shells is a proposed strategy to create patchy nanoparticles. The surface anisotropy, providing directionality along with interfacial properties emerging from both ligands, is highly desirable for targeted drug delivery, catalysis, and other applications. However, characterization of phase separation on the nanoscale remains quite challenging. Here we have adapted solid-state 1H spin diffusion NMR experiments designed to detect and quantify spatial heterogeneity in polymeric materials to nanoparticles (NPs) functionalized with mixed short ligands. Janus NPs and physical mixtures of homoligand 3.5 nm diameter ZrO2 NPs, with aromatic (phenylphosphonic acid, PPA) and aliphatic (oleic acid, OA) ligands, were used to calibrate the 1H spin diffusion experiments. The Janus NPs, prepared by a facile wax/water Pickering emulsion method, and mixed ligand NPs, produced by ligand exchange, both with 1:1 PPA:OA ligand compositions, display strikingly different solvent and particle-particle interactions. 1H spin diffusion NMR experiments are most consistent with a lamellar surface pattern for the mixed ligand ZrO2 NPs. Solid-state 1H spin diffusion NMR is shown to be a valuable additional characterization tool for mixed ligand NPs, as it not only detects the presence of nanoscale phase separation but also allows measurement of the domain sizes and geometries of the surface phase separation.

3.
Nanoscale ; 14(42): 15789-15798, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36250330

RESUMO

Perovskite nanocrystals (PNCs) and their strongly confined versions have traditionally been synthesized via hot injection methods. However, there is a pressing need for a new synthesis method that offers more flexible surface chemistry, improved optical properties, and greater sample stability. Here we explore and exploit the recently introduced microwave (MW) synthesis method, focusing on temperature and coating ligands, including a polymer ligand for which the hot injection method is unsuitable. The optimized microwave synthetic protocols produce PNCs with better exciton definition, lower polydispersity, and stronger ligand attachment than their hot injection counterparts. A variety of characterization techniques were employed to compare the properties of PNCs produced by the hot injection versus microwave methods. Insight into the molecular basis for the improved PNC properties was provided by FTIR and several NMR experiments that revealed the nature of the attachment of different ligands and their interactions with the PNCs. The overall results demonstrate that MW synthesis is a promising alternative to the HI method, particularly if smaller PNCs with strong quantum confinement are desired.

4.
Nanomaterials (Basel) ; 12(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35010041

RESUMO

Ethylene oxide oligomers and polymers, free and tethered to gold nanoparticles, were dispersed in blue phase liquid crystals (BPLC). Gold nanospheres (AuNPs) and nanorods (AuNRs) were functionalized with thiolated ethylene oxide ligands with molecular weights ranging from 200 to 5000 g/mol. The BPLC mixture (ΔTBP ~6 °C) was based on the mesogenic acid heterodimers, n-hexylbenzoic acid (6BA) and n-trans-butylcyclohexylcarboxylic acid (4-BCHA) with the chiral dopant (R)-2-octyl 4-[4-(hexyloxy)benzoyloxy]benzoate. The lowest molecular weight oligomer lowered and widened the BP range but adding AuNPs functionalized with the same ligand had little effect. Higher concentrations or molecular weights of the ligands, free or tethered to the AuNPs, completely destabilized the BP. Mini-AuNRs functionalized with the same ligands lowered and widened the BP temperature range with longer mini-AuNRs having a larger effect. In contrast to the AuNPs, the mini-AuNRs with the higher molecular weight ligands widened rather than destabilized the BP, though the lowest MW ligand yielded the largest BP range, (ΔTBP > 13 °C). The different effects on the BP may be due to the AuNPs accumulating at singular defect sites whereas the mini-AuNRs, with diameters smaller than that of the disclination lines, can more efficiently fill in the BP defects.

5.
Soft Matter ; 14(42): 8580-8589, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30318545

RESUMO

Liquid crystal (LC)-polymer blends are important stimuli responsive materials already employed in a wide range of applications whereas nanoparticle (NP)-LC blends are an emerging class of nanocomposites. Polymer ligands offer the advantages of synthetic simplicity along with chemical and molecular weight tunability. Here we compare the phase behavior of 5CB blended with poly(ethylene oxide) (PEO) and with gold NPs functionalized with thiolated PEO (AuNP-PEO) as a function of PEO concentration by DSC, POM and 13C NMR spectroscopy. Both PEO and the AuNP-PEO form uniform dispersions in isotropic 5CB and phase separate below the I-N phase transition temperature. Above the PEO crystallization temperature, the PEO/5CB blends show the expected biphasic state of PEO rich-isotropic liquid co-existing with PEO-poor nematic droplets. At PEO concentrations above 10 wt%, nematic 5CB nucleates with PEO crystallization. Both PEO and AuNP-PEO induce homeotropic alignment of the 5CB matrix immediately below TNI. The AuNP-PEO/5CB blends form thermally reversible cellular networks similar to AuNPs functionalized with low molecular weight mesogenic ligands. A thermodynamic model to account for the observed phase behavior is presented.

6.
Langmuir ; 32(33): 8442-50, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27466705

RESUMO

Nanoparticle-liquid crystal (NP-LC) composites based on hydrogen bonding were explored using a model system. The ligand shells of 3 nm diameter zirconium dioxide nanoparticles (ZrO2 NPs) were varied to control their interaction with 4-n-hexylbenzoic acid (6BA). The miscibility and effect of the NPs on the nematic order as a function of particle concentration was characterized by polarized optical microscopy (POM), fluorescence microscopy and (2)H NMR spectroscopy. Nonfunctionalized ZrO2 NPs have the lowest miscibility and strongest effect on the LC matrix due to irreversible binding of 6BA to the NPs via a strong zirconium carboxylate bond. The ZrO2 NPs were functionalized with 6-phosphonohexanoic acid (6PHA) or 4-(6-phosphonohexyloxy)benzoic acid (6BPHA) which selectively bind to the ZrO2 NP surface via the phosphonic acid groups. The miscibility was increased by controlling the concentration of the pendant CO2H groups by adding hexylphosphonic acid (HPA) to act as a spacer group. Fluorescence microscopy of lanthanide doped ZrO2 NPs showed no aggregates in the nematic phase below the NP concentration where aggregates are observed in the isotropic phase. The functionalized NPs preferably concentrate into LC defects and any remaining isotropic liquid but are still present throughout the nematic liquid at a lower concentration.

7.
ACS Nano ; 10(3): 3410-5, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26900753

RESUMO

Blue phases (BPs), a distinct class of liquid crystals (LCs) with 3D periodic ordering of double twist cylinders involving orthogonal helical director twists, have been theoretically studied as potential templates for tunable colloidal crystals. Here, we report the spontaneous formation of thermally reversible, cubic crystal nanoparticle (NP) assemblies in BPs. Gold NPs, functionalized to be highly miscible in cyanobiphenyl-based LCs, were dispersed in BP mixtures and characterized by polarized optical microscopy and synchrotron small-angle X-ray scattering (SAXS). The NPs assemble by selectively migrating to periodic strong trapping sites in the BP disclination lines. The NP lattice, remarkably robust given the small particle size (4.5 nm diameter), is commensurate with that of the BP matrix. At the BP I to BP II phase transition, the NP lattice reversibly switches between two different cubic structures. The simultaneous presence of two different symmetries in a single material presents an interesting opportunity to develop novel dynamic optical materials.

8.
Artigo em Inglês | MEDLINE | ID: mdl-25215674

RESUMO

We demonstrate that the morphological diversity in liquid-crystal hybrid systems is much richer than previously anticipated. More importantly, we reveal the existence of a dual mechanism for self-assembly of nanoparticles via morphological instabilities at phase boundaries. Using numerical simulations, we study the growth of isolated nematic droplets in an isotropic liquid crystal (LC) doped with nanoparticles (NPs) and provide insight into the nature of microstructure evolution in LC hybrids. Our work expands the numerically accessible time and length scales in these systems, capturing morphologies which develop under the competition of nonequilibrium elastic interactions, diffusive instabilities mediated by NP transport, and the anisotropy of the nematic field. By mapping nematic morphologies, we also propose a methodology for estimating various important LC material parameters that are difficult to obtain experimentally.


Assuntos
Cristais Líquidos/química , Nanocompostos/química , Algoritmos , Anisotropia , Simulação por Computador , Difusão , Elasticidade , Cinética , Modelos Químicos , Transição de Fase , Temperatura de Transição
9.
J Phys Chem B ; 117(41): 12625-31, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24083822

RESUMO

The structure and mechanical properties of gold nanorods and their interactions with alkenthiolate self-assembled monolayers have been determined using a novel first-principle density functional theory simulation approach. The multifaceted, 1-dimensional, octagonal nanorod has alternate Au100 and Au110 surfaces. The structural optimization of the gold nanorods was performed with a mixed basis: the outermost layer of gold atoms used double-ζ plus polarization (DZP), the layer below used double-ζ (DZ), and the inner layers used single-ζ (SZ). The final structure compares favorably with simulations using DZP for all atoms. Phonon dispersion calculations and ab initio molecular dynamics (AIMD) were used to establish the dynamic and thermal stability of the system. From the AIMD simulations it was found that the nanorod system will undergo significant surface reconstruction at 300 K. In addition, when subjected to mechanical stress in the axial direction, the nanorod responds as an orthotropic material, with uniform expansion along the radial direction. The Young's moduli are 207 kbar in the axial direction and 631 kbar in the radial direction. The binding of alkanethiolates, ranging from methanethiol to pentanethiol, caused formation of surface point defects on the Au110 surfaces. On the Au100 surfaces, the defects occurred in the inner layer, creating a small surface island. These defects make positive and negative concavities on the gold nanorod surface, which helps the ligand to achieve a more stable state. The simulation results narrowed significant knowledge gaps on the alkanethiolate adsorption process and on their mutual interactions on gold nanorods. The mechanical characterization offers a new dimension to understand the physical chemistry of these complex nanoparticles.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Teoria Quântica , Compostos de Sulfidrila/química , Ligantes , Modelos Moleculares , Propriedades de Superfície
10.
Langmuir ; 29(4): 1258-63, 2013 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-23294352

RESUMO

The molecular interactions driving the assembly of gold nanoparticles (AuNPs) in a nematic liquid crystal (LC) are directly detected by nuclear magnetic resonance (NMR) spectroscopy and thermodynamically analyzed. The orientational orders of the selectively deuterated LC matrix and AuNP ligands, each separately followed by variable temperature (2)H NMR as a function of particle concentration, were observed to be strongly correlated. The mechanism of the reversible formation of long-range, quasi-periodic nanoparticle structures is attributed to the coupling of the AuNP ligands to the LC matrix, inducing an isotropic-nematic biphasic state. Experimentally validated thermodynamic modeling shows that, in contrast to colloidal nematics that are dominated by elastic forces, nematic dispersions of nanoparticles self-organize through a subtle balance of entropic forces and excluded volume, interface-mediated mesogen and nanoparticle molecular interactions, and couplings between conserved and nonconserved order parameters. Fine-tuning of these interactions through ligand and mesogen chemistry, together with mesoscale modeling, provides a route for materials innovations by merging structured fluid physics and nanoscience.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(1 Pt 1): 011605, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23005428

RESUMO

Theory and simulations of simultaneous chemical demixing and phase ordering are performed for a mixed order parameter system with an isotropic-isotropic (I-I) phase separation that is metastable with respect to an isotropic-nematic (I-N) phase-ordering transition. Under certain conditions, the disordered phase transforms into an ordered phase via the motion of a double front containing a metastable phase produced by I-I demixing, a thermodynamically driven mechanism not previously reported. Different kinetic regimes are found depending on the location of the initial conditions in the thermodynamic phase diagram and the ratio between diffusional and nematic phase-ordering mobilities. For a diffusional process, depending if the temperature is above or below the critical codissolution point, an inflection point or a phase separation takes place in the depletion layer. This phase separation leads to the formation of a second interface where the separation of the two metastable isotropic phases grows monotonically with time. The observed deviations from the typical Fickian concentration profiles are associated with strong positive deviations of the mixture from ideality due to couplings between concentration and nematic ordering. Although systems of interest include liquid-crystalline nanocomposites, this mechanism may apply to any mixture that can undergo an order-disorder transition and demix.


Assuntos
Cristais Líquidos/química , Modelos Químicos , Modelos Moleculares , Reologia/métodos , Transição de Fase
12.
Langmuir ; 27(21): 13335-41, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21942338

RESUMO

A systematic analysis of defect textures in faceted nanoparticles with polygonal configurations embedded in a nematic matrix is performed using the Landau-de Gennes model, homeotropic strong anchoring in a square domain with uniform alignment in the outer boundaries. Defect and textures are analyzed as functions of temperature T, polygon size R, and polygon number N. For nematic nanocomposites, the texture satisfies a defect charge balance equation between bulk and surface (particle corner) charges. Upon decreasing the temperature, the central bulk defects split and together with other -1/2 bulk defects are absorbed by the nanoparticle's corners. Increasing the lattice size decreases confinement and eliminates bulk defects. Increasing the polygon number increases the central defect charge at high temperature and the number of surface defects at lower temperatures. The excess energy per particle is lower in even than in odd polygons, and it is minimized for a square particle arrangement. These discrete modeling results show for first time that, even under strong anchoring, defects are attached to particles as corner defects, leaving behind a low energy homogeneous orientation field that favors nanoparticle ordering in nematic matrices. These new insights are consistent with recent thermodynamic approaches to nematic nanocomposites that predict the existence of novel nematic/crystal phases and can be used to design nanocomposites with orientational and positional order.


Assuntos
Cristais Líquidos/química , Nanopartículas/química , Absorção
13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(6 Pt 1): 061705, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22304107

RESUMO

Aerosil silica nanoparticles dispersed in a liquid crystal (LC) possess the interesting property of keeping memory of an electric- or magnetic-field-induced orientation. Two types of memory have been identified: thermally erasable memory arising from the pinning of defect lines versus a "permanent" memory where the orientation persists even after thermal cycling the samples up to the isotropic phase. To address the source of the latter type of memory, solid-state nuclear magnetic resonance spectroscopy and conventional x-ray diffraction (XRD) were first combined to characterize the LC orientational order as a function of multiple in-field temperature cycles. Microbeam XRD was then performed on aligned gels of different concentrations to gain knowledge of the structural properties at the origin of the memory effect. No detectable anisotropy of the gel or significant breaking of silica strands with heating ruled out the formation of an anisotropic silica network as the source of the permanent memory as previously proposed. Instead, support for a role of the surface memory effect, well known for planar substrates, in stabilizing the permanent memory was deduced from "training" of the composites, that is, optimizing the orientational order through the thermal in-field cycling. The ability to train the composites is inversely proportional to the strength of the random-field disorder. The portion of thermally erasable memory also decreases as the silica density increases. We propose that the permanent memory originates from the surface memory effect operating at points of intersection in the silica network. These areas, where the LC is strongly confined with conflicted surface interactions, are trained to achieve an optimized orientation and subsequently act as sites from which the LC orientational order regrows after zero-field thermal cycling up to the isotropic phase.

14.
Langmuir ; 24(6): 2465-71, 2008 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-18269295

RESUMO

The chain conformation and dynamics of hydrocarbon and perfluorocarbon fatty acids adsorbed on 4 nm ZrO2 particles were characterized by solid-state 13C chemical shift and 19F NMR relaxation measurements, respectively, and compared to those from previous studies on lower surface area fumed metal oxide powders. The interdigitation of chains between neighboring particles, which increases with chain length, can be detected from the splitting of the 13C NMR and 19F NMR signals of the CH3 and CF3 groups, respectively. Similar to the case of alkanethiol self-assembled monolayers (SAMs) on gold nanoparticles, this interdigitation allows for efficient chain packing despite the high surface curvature. The hydrocarbon chains on the ZrO2 nanoparticles are more ordered, and the reversible chain length dependent order-disorder transition temperatures are elevated relative to those of the same fatty acids adsorbed on fumed ZrO2 powder. Likewise, the 19F spin lattice relaxation times of the fluorocarbon chains approach those of the bulk acids with increasing chain length and interdigitation, indicating densely packed chains.


Assuntos
Ácidos Graxos/química , Fluorocarbonos/química , Hidrocarbonetos/química , Nanopartículas/química , Zircônio/química , Adsorção , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/normas , Tamanho da Partícula , Padrões de Referência , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Propriedades de Superfície , Temperatura
15.
J Phys Chem B ; 112(11): 3322-7, 2008 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-18298110

RESUMO

Dispersions of hydrophilic (A300) and hydrophobic (R812) silica aerosils in a Schiff-base-type liquid crystal (LC), p-ethoxy(benzylidene)-p-n-butylaniline (2O.4), EBBA, were characterized by deuterium nuclear magnetic resonance (DNMR). The formation and stability of random (RAN) versus anisotropic (AAN) aerosil networks under zero- versus in-field cooling was studied as a function of aerosil density and compared to previous studies of n-alkylcyanobiphenyl (nCB) dispersions. Whereas the LC directors of the hydrophobic R812 dispersions are almost completely annealed after in-field cooling, the hydrophilic A300 silica in EBBA gives rise to a mixture of RAN and AAN. The more complete R812 AAN partially breaks under in-field sample rotation, but the partial AAN formed by the A300 silica is stable. Weakening the aerosil network to compensate for weaker LC surface anchoring results in a complete network, but a strong LC/silica surface interaction must be combined with hydrophilic aerosils to produce AANs which are both complete and stable.

16.
Langmuir ; 24(6): 2532-8, 2008 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-18229959

RESUMO

Gold nanoparticles of 5 nm diameter, stabilized by 4-(dimethylamino)pyridine (DMAP), were coated with poly(sodium 4-styrene sulfonate) (PSS) via electrostatic self-assembly. The suspension stability, monitored by the gold surface plasmon band (SPB), was studied by varying the pH, the PSS chain length, and PSS concentration. Enhanced stability is obtained at pH 10 (above the pKa of DMAP) when the polymer chain length matches or exceeds the particle circumference. Solid state 13C NMR was used to determine the presence of DMAP and polymers after subsequent deposition of weak and strong polycations: poly(allylamine hydrochloride) (PAH) and poly(diallyldimethylammonium chloride) (PDADMAC). At pH 10, DMAP remains associated with the nanoparticle after the first PSS layer has been formed. When PAH or PDADMAC are subsequently added at pH 4.5, DMAP is expelled, the suspensions remain stable, and zeta potential values indicate complete charge reversal. In the case of PDADMAC, however, the first layer of PSS is not fully retained. When PDADMAC is added at pH 10, DMAP and the first PSS layer are retained but lower zeta potentials and a higher SPB shift indicate a degraded stability. For PAH addition at pH 9.5, both DMAP and PSS are expelled and the suspension becomes unstable. These differences in stability of the multilayer components and the nanoparticle suspension are rationalized in terms of chain flexibility, polymer charge density, and the ability of the polymer functional groups to directly interact with the gold surface.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Poliestirenos/química , 4-Aminopiridina/análogos & derivados , 4-Aminopiridina/química , Eletrólitos/química , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética/métodos , Tamanho da Partícula , Propriedades de Superfície
17.
Langmuir ; 23(5): 2857-66, 2007 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-17309224

RESUMO

Gold nanoparticles capped with 11-mercaptoundecanylphosphonic acid (MUP) and sodium 10-mercaptodecanesulfonic acid (MDS) were characterized by a range of techniques which included solid-state 31P and 13C NMR spectroscopies. Despite similar core sizes and alkyl chain lengths, the conformational and dynamic properties of the capping ligands are very different for the two types of nanoparticles. Whereas MDS produces disordered monolayers on planar gold surfaces, the MDS-capped nanoparticles show a high degree of chain order with the onset of reversible chain disordering occurring just above room temperature. The alkyl chains of MUP adsorbed on the gold nanoparticles are more ordered and motionally restricted than the unbound solid surfactant due to strong intramonolayer and interparticle hydrogen bonds. This conformational order is thermally stable, and disordering only occurs upon decomposition and desorption of MUP from the gold core. Solid-state 31P NMR has been demonstrated to be a sensitive probe of the interactions of the PO3H2 terminal groups.

18.
Langmuir ; 22(3): 1055-62, 2006 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-16430265

RESUMO

The bonding and dynamic properties of perfluoroalkanoic acid self-assembled monolayers (SAMs) on zirconia and titania powders were characterized by Fourier transform infrared and solid-state 19F magic-angle spinning NMR spectroscopy. The perfluoro fatty acids investigated included C(n)F(2n+1)CO2H, n = 7, 13, 15 and 17. The acids bind to both metal oxides via ionic carboxylate bonds, but complete monolayers are only formed on the zirconia. The shift of the CF3 group from -83 ppm in the bulk state to -85 ppm for the adsorbed monolayers is assigned to CF3 groups located at the air/monolayer interface. With the exception of the perfluorooctanoic acid, 19F spin lattice relaxation measurements indicate that the fluorocarbon chains of the adsorbed acids, even in the case of densely packed monolayers, are significantly more mobile than those in the bulk state. The motions associated with the enhanced mobility of the adsorbed acids are proposed to involve reorientations along the long chain axes. No evidence for chain melting in the fluorocarbon SAMs is found for temperatures well above the melting temperature of the bulk acids.

19.
J Am Chem Soc ; 125(14): 4174-84, 2003 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-12670240

RESUMO

The structures formed by the adsorption of carboxyalkylphosphonic acids on metal oxides were investigated by (1)H fast magic angle spinning (MAS), heteronuclear correlation (HETCOR), and (1)H double-quantum (DQ) MAS solid-state NMR experiments. The diacids HO(2)C(CH(2))(n)PO(3)H(2) (n = 2, 3, 11, and 15) were adsorbed on TiO(2) and two types of ZrO(2) powders having average particle sizes of 20, 30, and 5 nm, respectively. Carboxyalkylphosphonic acids bind selectively via the phosphonate group, forming monolayers with pendant carboxylic acid groups. Whereas dipolar coupled P-OH protons are detected on TiO(2), there are only isolated residual P-OH groups on ZrO(2), reflecting the relative binding strengths of phosphonic acids on these two substrates. From a comparative (1)H MAS NMR study with an analogous monolayer system, HO(2)C(CH(2))(7)SH coated gold nanoparticles, the hydrogen-bonding network at the monolayer/air interface is found to be quite disordered, at least for SAMs deposited on nonplanar substrates. Whereas only hydrogen-bonded homodimers occur in the bulk diacids, hydrogen bonding between the carboxylic and phosphonic acid groups is present in multilayers of the diacids on the ZrO(2) nanopowder.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA