Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1152597, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37206331

RESUMO

Avocado (Persea americana Mill.) is a tree crop of great social and economic importance. However, the crop productivity is hindered by fast-spreading diseases, which calls for the search of new biocontrol alternatives to mitigate the impact of avocado phytopathogens. Our objectives were to evaluate the antimicrobial activity of diffusible and volatile organic compounds (VOCs) produced by two avocado rhizobacteria (Bacillus A8a and HA) against phytopathogens Fusarium solani, Fusarium kuroshium, and Phytophthora cinnamomi, and assess their plant growth promoting effect in Arabidopsis thaliana. We found that, in vitro, VOCs emitted by both bacterial strains inhibited mycelial growth of the tested pathogens by at least 20%. Identification of bacterial VOCs by gas chromatography coupled to mass spectrometry (GC-MS) showed a predominance of ketones, alcohols and nitrogenous compounds, previously reported for their antimicrobial activity. Bacterial organic extracts obtained with ethyl acetate significantly reduced mycelial growth of F. solani, F. kuroshium, and P. cinnamomi, the highest inhibition being displayed by those from strain A8a (32, 77, and 100% inhibition, respectively). Tentative identifications carried out by liquid chromatography coupled to accurate mass spectrometry of diffusible metabolites in the bacterial extracts, evidenced the presence of some polyketides such as macrolactins and difficidin, hybrid peptides including bacillaene, and non-ribosomal peptides such as bacilysin, which have also been described in Bacillus spp. for antimicrobial activities. The plant growth regulator indole-3-acetic acid was also identified in the bacterial extracts. In vitro assays showed that VOCs from strain HA and diffusible compounds from strain A8a modified root development and increased fresh weight of A. thaliana. These compounds differentially activated several hormonal signaling pathways involved in development and defense responses in A. thaliana, such as auxin, jasmonic acid (JA) and salicylic acid (SA); genetic analyses suggested that developmental stimulation of the root system architecture by strain A8a was mediated by the auxin signaling pathway. Furthermore, both strains were able to enhance plant growth and decreased the symptoms of Fusarium wilt in A. thaliana when soil-inoculated. Collectively, our results evidence the potential of these two rhizobacterial strains and their metabolites as biocontrol agents of avocado pathogens and as biofertilizers.

2.
Microorganisms ; 10(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36144367

RESUMO

Despite the central role of microorganisms in soil fertility, little understanding exists regarding the impact of management practices and soil microbial diversity on soil processes. Strong correlations among soil microbial composition, management practices, and microbially mediated processes have been previously shown. However, limited integration of the different parameters has hindered our understanding of agroecosystem functioning. Multivariate analyses of these systems allow simultaneous evaluation of the parameters and can lead to hypotheses on the microbial groups involved in specific nutrient transformations. In the present study, using a multivariate approach, we investigated the effect of microbial composition (16SrDNA sequencing) and soil properties in carbon mineralization (CMIN) (BIOLOG™, Hayward, CA, USA) across different management categories on coffee agroecosystems in Mexico. Results showed that (i) changes in soil physicochemical variables were related to management, not to region, (ii) microbial composition was associated with changes in management intensity, (iii) specific bacterial groups were associated with different management categories, and (iv) there was a broader utilization range of carbon sources in non-managed plots. The identification of specific bacterial groups, management practices, and soil parameters, and their correlation with the utilization range of carbon sources, presents the possibility to experimentally test hypotheses on the interplay of all these components and further our understanding of agroecosystem functioning and sustainable management.

3.
Chem Biodivers ; 19(11): e202200687, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36149759

RESUMO

Antimicrobial compounds produced by bacteria have been increasingly acknowledged as an important resource for the control of phytopathogens. We used a bioassay-guided fractionation approach to identify antifungal metabolites produced by two avocado rhizobacteria (INECOL-4742 and INECOL-5927), both members of the Bacillus subtilis/B. amyloliquefaciens species complex, against Fusarium solani and F. kuroshium, causal agent of Fusarium dieback in avocado and other hosts. The butanol (BuOH) organic extract from INECOL-4742 (B1-Bu) exhibited the highest percentage of inhibition (PI) against F. solani (78.76 %), also inhibiting F. kuroshium by up to 44.30 %. Primary fractions, Bu-F3, Bu-F12 and Bu-F15, obtained by silica gel open column chromatography, exhibited the highest PI against F. solani (28.57 % to 33.50 %) and F. kuroshium (38.78 % to 45.00 %). The presence of cyclic lipopeptides from the iturin, surfactin and fengycin families in B1-Bu extracts and primary fractions was determined by UPLC-ESI-HRMS. The Confocal Laser Microscopy analysis revealed deformations in the hyphae of F. kuroshium exposed to extracts, primary fractions and C-13 surfactin chemical standard. These results emphasize the potential of natural products from Bacillus for the control of the emerging phytopathogenic fungus F. kuroshium.


Assuntos
Bacillus , Produtos Biológicos , Fusarium , Persea , Humanos , Fusarium/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Lipopeptídeos/farmacologia , Lipopeptídeos/análise , Lipopeptídeos/metabolismo , Produtos Biológicos/metabolismo , Bioensaio , Doenças das Plantas/microbiologia
4.
Environ Sci Pollut Res Int ; 29(8): 11951-11965, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34558043

RESUMO

Mangroves play an essential role in the global carbon cycle. However, they are highly vulnerable to degradation with little-known effects on greenhouse gas (GHG) emissions. This study compared seasonal soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes from a black mangrove (Avicennia germinans) forest in the Tampamachoco coastal lagoon, Veracruz, Mexico, in areas subjected to different degrees of environmental degradation (full canopy, transitional and dead mangrove), caused by hydrological perturbation. Furthermore, we aimed at determining the environmental factors driving seasonal fluxes. There was a combined effect of seasonality and degradation on CH4 fluxes, highest during the rainy season in the dead mangrove (0.93 ± 0.18 mg CH4 m-2 h-1). CO2 fluxes were highest during the dry season (220 ± 23 mg CO2 m-2 h-1), with no significant differences among degradation levels. N2O fluxes did not vary among seasons or degradation levels (- 3.8 to 2.9 mg N2O m-2 h-1). The overall CO2-eq emission rate was 15.3 ± 2.7 Mg CO2-eq ha-1 year-1, with CO2 as the main gas contributing to total emissions. The main factors controlling CH4 fluxes were seasonal porewater salinity and the availability of NO2-, NO3-, and SO4-2 in the soil, favored by high water level and temperature in the absence of pneumatophores. The main determining factors controlling CO2 fluxes were water level, porewater redox potential, and soil Cl- and SO4-2 concentration. Finally, N2O fluxes were related to NO2-, NO3-, and SO4-2 soil concentrations. This study contributes to improving the knowledge of soil GHG fluxes dynamics in mangroves and the effect of degradation of these ecosystems on the coastal biogeochemical cycles, which may bring important insights for assessing accurate ways to mitigate climate change protecting and restoring these ecosystems.


Assuntos
Avicennia , Gases de Efeito Estufa , Dióxido de Carbono/análise , Ecossistema , Monitoramento Ambiental , Florestas , Efeito Estufa , Gases de Efeito Estufa/análise , Metano/análise , Óxido Nitroso/análise , Estações do Ano , Solo , Áreas Alagadas
5.
Arch Microbiol ; 203(7): 4593-4607, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34160629

RESUMO

Bark is a permanent surface for microbial colonization at the interface of trees and the surrounding air, but little is known about its microbial communities. We used shotgun metagenomic sequencing to analyze the bark microbiomes of avocado trees from two orchards, and compared one of them to rhizospheric soil. It was shown that the microbial communities of avocado bark have a well-defined taxonomic structure, with consistent patterns of abundance of bacteria, fungi, and archaea, even in trees from two different locations. Bark microbial communities were distinct from rhizospheric soil, although they showed overlap in some taxa. Thus, avocado bark is a well-defined environment, providing niches for specific taxonomic groups, many of which are also found in other aerial plant tissues. The present in-depth characterization of bark microbial communities can form a basis for their future manipulation for agronomical purposes.


Assuntos
Biodiversidade , Microbiota , Persea , Casca de Planta , Archaea/genética , Bactérias/genética , Fungos/genética , Fungos/fisiologia , Metagenômica , Microbiota/genética , Microbiota/fisiologia , Persea/microbiologia , Casca de Planta/microbiologia , Microbiologia do Solo
6.
BMC Res Notes ; 14(1): 54, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33557933

RESUMO

OBJECTIVES: Altitude integrates changes in environmental conditions that determine shifts in vegetation, including temperature, precipitation, solar radiation and edaphogenetic processes. In turn, vegetation alters soil biophysical properties through litter input, root growth, microbial and macrofaunal interactions. The belowground traits of plant communities modify soil processes in different ways, but it is not known how root traits influence soil biota at the community level. We collected data to investigate how elevation affects belowground community traits and soil microbial and faunal communities. This dataset comprises data from a temperate climate in France and a twin study was performed in a tropical zone in Mexico. DATA DESCRIPTION: The paper describes soil physical and chemical properties, climatic variables, plant community composition and species abundance, plant community traits, soil microbial functional diversity and macrofaunal abundance and diversity. Data are provided for six elevations (1400-2400 m) ranging from montane forest to alpine prairie. We focused on soil biophysical properties beneath three dominant plant species that structure local vegetation. These data are useful for understanding how shifts in vegetation communities affect belowground processes, such as water infiltration, soil aggregation and carbon storage. Data will also help researchers understand how plant communities adjust to a changing climate/environment.


Assuntos
Ecossistema , Solo , França , México , Plantas , Microbiologia do Solo
7.
Environ Sci Pollut Res Int ; 28(6): 6684-6690, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33009613

RESUMO

Biochar has strong potential to improve nitrogen (N) use efficiency in both agricultural and horticultural systems. Biochar is usually co-applied with full rates of fertiliser. However, the extent to which N cycling can be affected after biochar application to meet plant N requirement remains uncertain. This study aimed to explore N cycling up to 2 years after biochar application. We applied pine woodchip biochar at 0, 10 and 30 t ha-1 (B0, B10, B30, respectively) in a macadamia orchard and evaluated the N isotope composition (δ15N) of soil, microbial biomass and macadamia leaves. Soil total N (TN) and inorganic N pools were also measured up to 2 years after biochar application. Biochar did not alter soil TN but soil NO3--N increased at months 12 and 24 after biochar application. Soil NO3--N concentrations were always over ideal levels of 15 µg g-1 in B30 throughout the study. Stepwise regression indicated that foliar δ15N decreases after biochar application were explained by increased NO3--N concentrations in B30. Foliar TN and photosynthesis were not affected by biochar application. The soil in the high rate biochar plots had excess NO3--N concentrations (over 30 µg g-1) from month 20 onwards. Therefore, N fertiliser applications could be adjusted to prevent excessive N inputs and increase farm profitability.


Assuntos
Carvão Vegetal , Solo , Nitrogênio/análise , Isótopos de Nitrogênio
8.
Glob Chang Biol ; 26(12): 7112-7127, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32902066

RESUMO

Global climate and land use change are causing woody plant encroachment in arctic, alpine, and arid/semi-arid ecosystems around the world, yet our understanding of the belowground impacts of this phenomenon is limited. We conducted a globally distributed field study of 13 alpine sites across four continents undergoing woody plant encroachment and sampled soils from both woody encroached and nearby herbaceous plant community types. We found that woody plant encroachment influenced soil microbial richness and community composition across sites based on multiple factors including woody plant traits, site level climate, and abiotic soil conditions. In particular, root symbiont type was a key determinant of belowground effects, as Nitrogen-fixing woody plants had higher soil fungal richness, while Ecto/Ericoid mycorrhizal species had higher soil bacterial richness and symbiont types had distinct soil microbial community composition. Woody plant leaf traits indirectly influenced soil microbes through their impact on soil abiotic conditions, primarily soil pH and C:N ratios. Finally, site-level climate affected the overall magnitude and direction of woody plant influence, as soil fungal and bacterial richness were either higher or lower in woody encroached versus herbaceous soils depending on mean annual temperature and precipitation. All together, these results document global impacts of woody plant encroachment on soil microbial communities, but highlight that multiple biotic and abiotic pathways must be considered to scale up globally from site- and species-level patterns. Considering both the aboveground and belowground effects of woody encroachment will be critical to predict future changes in alpine ecosystem structure and function and subsequent feedbacks to the global climate system.


Assuntos
Ecossistema , Solo , Clima , Nitrogênio/análise , Plantas
9.
Braz J Microbiol ; 51(3): 861-873, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32166656

RESUMO

Rhizobacteria emit bioactive metabolites with antifungal properties that could be used for biocontrol of fungal diseases. In this study, we evaluated the potential of diffusible and volatile organic compounds (VOCs) emitted by avocado rhizobacteria to inhibit the growth of Fusarium kuroshium, one of the causal agents of Fusarium dieback (FD) in avocado. Three bacterial isolates (INECOL-6004, INECOL-6005, and INECOL-6006), belonging to the Bacillus genus, were selected based on their capacity to inhibit several avocado fungal pathogens, and tested in antagonism assays against F. kuroshium. The three bacterial isolates significantly inhibited F. kuroshium mycelial growth by up to 48%. The composition of bacterial diffusible compounds was characterized by the analysis of EtOAc and n-BuOH extracts by using ultra-performance liquid chromatography (UPLC) coupled to high-resolution mass spectrometry (HRMS). The three bacterial isolates produced cyclo-lipopeptides belonging to the iturin, fengycin, and surfactin families. The antifungal activity of n-BuOH extracts was larger than that of EtOAc extracts, probably due to the greater relative abundance of fengycin in the former than in the latter. In addition, isolates INECOL-6004 and INECOL-6006 significantly inhibited F. kuroshium mycelial growth through VOC emission by up to 69.88%. The analysis of their VOC profiles by solid phase micro-extraction (SPME) coupled to gas chromatography and mass spectrometry (GC-MS) revealed the presence of ketones and pyrazine compounds, particularly of 2-nonanone, which was not detected in the VOC profile of isolate INECOL-6005. These results emphasize the need to further investigate the antifungal activity of each bioactive compound for the development of new formulations against fungal phytopathogens.


Assuntos
Antifúngicos/farmacologia , Fusarium/efeitos dos fármacos , Persea/microbiologia , Compostos Orgânicos Voláteis/farmacologia , Antibiose , Antifúngicos/química , Antifúngicos/metabolismo , Bacillus/isolamento & purificação , Bacillus/metabolismo , Fusarium/crescimento & desenvolvimento , Lipopeptídeos/química , Lipopeptídeos/metabolismo , Lipopeptídeos/farmacologia , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Microbiologia do Solo , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo
10.
Microbiol Res ; 235: 126440, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32109690

RESUMO

Although the use of crop-associated bacteria as biological control agents of fungal diseases has gained increasing interest, the biotechnological potential of forest tree-associated microbes and their natural products has scarcely been investigated. The objective of this study was to identify bacteria or bacterial products with antagonistic activity against Fusarium solani and Fusarium kuroshium, causal agent of Fusarium dieback, by screening the rhizosphere and phyllosphere of three Lauraceae species. From 195 bacterial isolates, we identified 32 isolates that significantly reduced the growth of F. solani in vitro, which mostly belonged to bacterial taxa Bacillus, Pseudomonas and Actinobacteria. The antifungal activity of their volatile organic compounds (VOCs) was also evaluated. Bacterial strain Bacillus sp. CCeRi1-002, recovered from the rhizosphere of Aiouea effusa, showed the highest percentage of direct inhibition (62.5 %) of F. solani and produced diffusible compounds that significantly reduced its mycelial growth. HPLC-MS analyses on this strain allowed to tentatively identify bioactive compounds from three lipopeptide groups (iturin, surfactin and fengycin). Bacillus sp. CCeRi1-002 and another strain identified as Pseudomonas sp. significantly inhibited F. solani mycelial growth through the emission of VOCs. Chemical analysis of their volatile profiles indicated the likely presence of 2-nonanone, 2-undecanone, disulfide dimethyl and 1-butanol 3-methyl-, which had been previously reported with antifungal activity. In antagonism assays against F. kuroshium, Bacillus sp. CCeRi1-002 and its diffusible compounds exhibited significant antifungal activity and induced hyphal deformations. Our findings highlight the importance of considering bacteria associated with forest species and the need to include bacterial products in the search for potential antagonists of Fusarium dieback.


Assuntos
Antibiose , Antifúngicos/farmacologia , Bactérias/química , Agentes de Controle Biológico/química , Fusarium/patogenicidade , Doenças das Plantas/prevenção & controle , Árvores/microbiologia , Florestas , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S , Rizosfera , Compostos Orgânicos Voláteis/química
11.
Front Microbiol ; 11: 574110, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33510714

RESUMO

The structure and function of rhizosphere microbial communities are affected by the plant health status. In this study, we investigated the effect of root rot on the avocado rhizosphere microbiome, using 16S rDNA and ITS sequencing. Furthermore, we isolated potential fungal pathogens associated with root rot symptoms and assessed their pathogenic activity on avocado. We found that root rot did not affect species richness, diversity or community structure, but induced changes in the relative abundance of several microbial taxa. Root rot increased the proportion of Pseudomonadales and Burkholderiales in the rhizosphere but reduced that of Actinobacteria, Bacillus spp. and Rhizobiales. An increase in putative opportunistic fungal pathogens was also detected in the roots of symptomatic trees; the potential pathogenicity of Mortierella sp., Fusarium spp., Lasiodiplodia sp. and Scytalidium sp., is reported for the first time for the State of Veracruz, Mexico. Root rot also potentially modified the predicted functions carried out by rhizobacteria, reducing the proportion of categories linked with the lipid and amino-acid metabolisms whilst promoting those associated with quorum sensing, virulence, and antibiotic resistance. Altogether, our results could help identifying microbial taxa associated to the disease causal agents and direct the selection of plant growth-promoting bacteria for the development of biocontrol microbial consortia.

12.
Braz J Microbiol ; 50(3): 583-592, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31119710

RESUMO

The occurrence of pests and diseases can affect plant health and productivity in ecosystems that are already at risk, such as tropical montane cloud forests. The use of naturally occurring microorganisms is a promising alternative to mitigate forest tree fungal pathogens. The objectives of this study were to isolate rhizobacteria associated with five Lauraceae species from a Mexican tropical montane cloud forest and to evaluate their antifungal activity against Fusarium solani and F. oxysporum. Fifty-six rhizobacterial isolates were assessed for mycelial growth inhibition of Fusarium spp. through dual culture assays. Thirty-three isolates significantly reduced the growth of F. solani, while 21 isolates inhibited that of F. oxysporum. The nine bacterial isolates that inhibited fungal growth by more than 20% were identified through 16S rDNA gene sequence analysis; they belonged to the genera Streptomyces, Arthrobacter, Pseudomonas, and Staphylococcus. The volatile organic compounds (VOC) produced by these nine isolates were evaluated for antifungal activity. Six isolates (Streptomyces sp., Arthrobacter sp., Pseudomonas sp., and Staphylococcus spp.) successfully inhibited F. solani mycelial growth by up to 37% through VOC emission, while only the isolate INECOL-21 (Pseudomonas sp.) inhibited F. oxysporum. This work provides information on the microbiota of Mexican Lauraceae and is one of the few studies identifying forest tree-associated microbes with inhibitory activity against tree pathogens.


Assuntos
Antifúngicos/farmacologia , Bactérias/metabolismo , Fusarium/efeitos dos fármacos , Lauraceae/microbiologia , Compostos Orgânicos Voláteis/farmacologia , Antifúngicos/química , Antifúngicos/metabolismo , Bactérias/química , Bactérias/classificação , Bactérias/isolamento & purificação , Fusarium/crescimento & desenvolvimento , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Microbiologia do Solo , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo
13.
Microbiol Res ; 219: 74-83, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30642469

RESUMO

Recent studies showed that bacterial volatile organic compounds (VOCs) play an important role in the suppression of phytopathogens. The ability of VOCs produced by avocado (Persea americana Mill.) rhizobacteria to suppress the growth of common avocado pathogens was therefore investigated. We evaluated the antifungal activity of VOCs emitted by avocado rhizobacteria in a first screening against Fusarium solani, and in subsequent antagonism assays against Fusarium sp. associated with Kuroshio shot hole borer, Colletotrichum gloeosporioides and Phytophthora cinnamomi, responsible for Fusarium dieback, anthracnosis and Phytophthora root rot in avocado, respectively. We also analyzed the composition of the bacterial volatile profiles by solid phase microextraction (SPME) gas chromatography coupled to mass spectrometry (GC-MS). Seven isolates, belonging to the bacterial genera Bacillus and Pseudomonas, reduced the mycelial growth of F. solani with inhibition percentages higher than 20%. Isolate HA, related to Bacillus amyloliquefaciens, significantly reduced the mycelial growth of Fusarium sp. and C. gloeosporioides and the mycelium density of P. cinnamomi. Isolates SO and SJJ, also members of the genus Bacillus, reduced Fusarium sp. mycelial growth and induced morphological alterations of fungal hyphae whilst isolate HB, close to B. mycoides, inhibited C. gloeosporioides. The analysis of the volatile profiles revealed the presence of ketones, pyrazines and sulfur-containing compounds, previously reported with antifungal activity. Altogether, our results support the potential of avocado rhizobacteria to act as biocontrol agents of avocado fungal pathogens and emphasize the importance of Bacillus spp. for the control of emerging avocado diseases such as Fusarium dieback.


Assuntos
Antifúngicos/farmacologia , Bacillus/metabolismo , Agentes de Controle Biológico/farmacologia , Colletotrichum/efeitos dos fármacos , Fusarium/efeitos dos fármacos , Persea/microbiologia , Phytophthora/efeitos dos fármacos , Pseudomonas/metabolismo , Compostos Orgânicos Voláteis/farmacologia , Animais , Antifúngicos/metabolismo , Agentes de Controle Biológico/metabolismo , Besouros/microbiologia , Compostos Orgânicos Voláteis/metabolismo
14.
PLoS One ; 13(3): e0194665, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29558512

RESUMO

Rhizobacteria associated with crops constitute an important source of potentially beneficial microorganisms with plant growth promoting activity or antagonistic effects against phytopathogens. In this study, we evaluated the plant growth promoting activity of 11 bacterial isolates that were obtained from the rhizosphere of healthy avocado trees and from that of avocado trees having survived root rot infestations. Seven bacterial isolates, belonging to the genera Bacillus, Pseudomonas and Arthrobacter, promoted in vitro growth of Arabidopsis thaliana. These isolates were then tested for antagonistic activity against Phytophthora cinnamomi, in direct dual culture assays. Two of those rhizobacterial isolates, obtained from symptomatic-declining trees, displayed antagonistic activity. Isolate A8a, which is closely related to Bacillus acidiceler, was also able to inhibit P. cinnamomi growth in vitro by 76% through the production of volatile compounds. Solid phase microextraction (SPME) and analysis by gas chromatography coupled with mass spectrometry (GC-MS) allowed to tentatively identify the main volatiles emitted by isolate A8a as 2,3,5-trimethylpyrazine, 6,10-dimethyl-5,9-undecadien-2-one and 3-amino-1,3-oxazolidin-2-one. These volatile compounds have been reported to show antifungal activity when produced by other bacterial isolates. These results confirm the significance of rhizobacteria and suggest that these bacteria could be used for biocontrol of soil borne oomycetes through their volatiles emissions.


Assuntos
Antibiose/fisiologia , Persea/microbiologia , Phytophthora/efeitos dos fármacos , Rhizobiaceae/fisiologia , Rizosfera , Compostos Orgânicos Voláteis/farmacologia , Antibiose/efeitos dos fármacos , Persea/crescimento & desenvolvimento , Desenvolvimento Vegetal/efeitos dos fármacos , Desenvolvimento Vegetal/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Rhizobiaceae/metabolismo , Solo/química , Microbiologia do Solo , Compostos Orgânicos Voláteis/metabolismo
15.
Antonie Van Leeuwenhoek ; 111(4): 563-572, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29124466

RESUMO

Plant rhizobacteria have been successfully used as biocontrol agents against fungal phytopathogens. However, their potential to control two important avocado diseases, namely Fusarium dieback (FD) and Phytophthora root rot (PRR), has been poorly studied. FD is an emerging disease triggered by fungi associated with two ambrosia beetle species (Euwallacea fornicatus species complex), while PRR is caused by Phytophthora cinnamomi, a soil-borne oomycete. In the present work, the antifungal activity of bacteria isolated from avocado rhizosphere was tested in dual culture assays against Fusarium euwallaceae, Graphium euwallaceae and Graphium sp., causal agents of FD, and against P. cinnamomi. In 2015, rhizosphere soil samples of FD infested and non-infested avocado trees were collected from a commercial avocado orchard in Escondido, California. In an initial screening, 72 of the 168 assessed bacterial isolates reduced mycelial growth of F. euwallaceae by up to 46%. Eight bacterial isolates showing inhibition percentages larger than 40% were then selected for further antagonism assays against the other fungal pathogens. Five bacterial isolates, determined by 16S rDNA sequencing to belong to the Bacillus subtilis/Bacillus amyloliquefaciens species complex, successfully inhibited the mycelial growth of both Graphium species by up to 30%. The same isolates and an additional isolate identified as Bacillus mycoides, inhibited the growth of P. cinnamomi by up to 25%. This is the first report of avocado rhizobacteria with antifungal activity against pathogens responsible for FD and PRR in avocado.


Assuntos
Ascomicetos/fisiologia , Bacillus/isolamento & purificação , Fusarium/fisiologia , Interações Microbianas/fisiologia , Persea/microbiologia , Phytophthora/fisiologia , Rizosfera , Animais , Antifúngicos/metabolismo , Bacillus/classificação , Bacillus/metabolismo , California , Insetos Vetores/microbiologia , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Gorgulhos/microbiologia
16.
Environ Sci Pollut Res Int ; 22(5): 3803-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25266060

RESUMO

This study aimed to evaluate the improvement in soil fertility and plant nutrient use in a macadamia orchard following biochar application. The main objectives of this study were to assess the effects of poultry litter and green waste biochar applications on nitrogen (N) cycling using N isotope composition (δ(15)N) and nutrient availability in a soil-plant system at a macadamia orchard, 5 years following application. Biochar was applied at 10 t ha(-1) dry weight but concentrated within a 3-m diameter zone when trees were planted in 2007. Soil and leaf samples were collected in 2012, and both soil and foliar N isotope composition (δ(15)N) and nutrient concentrations were assessed. Both soil and foliar δ(15)N increased significantly in the poultry litter biochar plots compared to the green waste biochar and control plots. A significant relationship was observed between soil and plant δ(15)N. There was no influence of either biochars on foliar total N concentrations or soil NH4 (+)-N and NO3 (-)-N, which suggested that biochar application did not pose any restriction for plant N uptake. Plant bioavailable phosphorus (P) was significantly higher in the poultry litter biochar treatment compared to the green waste biochar treatment and control. We hypothesised that the bioavailability of N and P content of poultry litter biochar may play an important role in increasing soil and plant δ(15)N and P concentrations. Biochar application affected soil-plant N cycling and there is potential to use soil and plant δ(15)N to investigate N cycling in a soil-biochar-tree crop system. The poultry litter biochar significantly increased soil fertility compared to the green waste biochar at 5 years following biochar application which makes the poultry litter a better feedstock to produce biochar compared to green waste for the tree crops.


Assuntos
Agricultura/métodos , Macadamia/crescimento & desenvolvimento , Isótopos de Nitrogênio/análise , Folhas de Planta/química , Aves Domésticas , Solo/química , Animais , Carvão Vegetal , Fertilizantes , Macadamia/química , Esterco , Fósforo/metabolismo , Fatores de Tempo
17.
Environ Sci Pollut Res Int ; 22(3): 2138-44, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25167814

RESUMO

Mining activities result in extensive soil degradation by removing the top soil, disturbing soil structure and altering microbial communities. Rehabilitation of spent mine sites through revegetation thus requires proper soil amendments. In this study, a pot trial was conducted to investigate the effects of a jarrah biochar on the growth and nutrient status of a native legume, Acacia tetragonophylla, grown in a mixture of topsoil and mine rejects. Two biochar application rates (37 and 74 t ha(-1)) and two types of biochar, namely nutrient-enriched and non-enriched, were tested. We measured the soil pH and electrical conductivity, the carbon (C) and nitrogen (N) contents and C and N isotope composition (δ(13)C and δ(15)N) of soil and plants, the foliar phosphorus content and the growth and leaf biomass of the plants. Whilst no significant effect of biochar was observed on plant growth, biochar amendment affected soil properties and plant nutritional status. The highest rate of biochar application increased soil pH, C content and C/N ratio, and decreased soil δ(13)C. Biochar application also enhanced photosynthetic N use efficiency, as showed by the increase in foliar C/N ratio, and biological N fixation rates, as indicated by foliar δ(15)N. These positive effects were not observed when biochar was nutrient-enriched due to the associated increase in soil N. Revegetation of mine sites with acacia in combination with biochar amendment constitutes a plausible alternative to the wide use of N fertiliser through the supply of additional N to the system, even though other nutrients may be required in order to enhance plant early growth.


Assuntos
Acacia/efeitos dos fármacos , Carvão Vegetal/farmacologia , Mineração , Acacia/crescimento & desenvolvimento , Acacia/metabolismo , Biodegradação Ambiental/efeitos dos fármacos , Biomassa , Carvão Vegetal/química , Eucalyptus/química , Solo/química
18.
Front Microbiol ; 6: 1439, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26733978

RESUMO

Tree mono-plantations are susceptible to soil nutrient impoverishment and mixed species plantations have been proposed as a way of maintaining soil fertility while enhancing biodiversity. In the Solomon Islands, mixed species plantations where teak (Tectona grandis) is inter-planted with a local tree species (Flueggea flexuosa) have been used as an alternative to teak mono-plantations and are expected to increase soil microbial diversity and modify microbial biogeochemical processes. In this study, we quantified the abundance of microbial functional genes involved in the nitrogen (N) cycle from soil samples collected in teak, flueggea, and mixed species plantations. Furthermore, we measured soil properties such as pH, total carbon (C) and total N, stable N isotope composition (δ(15)N), and inorganic N pools. Soil pH and δ(15)N were higher under teak than under flueggea, which indicates that intercropping teak with flueggea may decrease bacterial activities and potential N losses. Higher C:N ratios were found under mixed species plantations than those under teak, suggesting an enhancement of N immobilization that would help preventing fast N losses. However, inorganic N pools remained unaffected by plant cover. Inter-planting teak with flueggea in mixed species plantations generally increased the relative abundance of denitrification genes and promoted the enrichment of nosZ-harboring denitrifiers. However, it reduced the abundance of bacterial amoA (ammonia monooxygenase) genes compared to teak mono-plantations. The abundance of most denitrification genes correlated with soil total N and C:N ratio, while bacterial and archeal nitrification genes correlated positively with soil NH4 (+) concentrations. Altogether, these results show that the abundance of bacterial N-cycling functional guilds vary under teak and under mixed species plantations, and that inter-planting teak with flueggea may potentially alleviate N losses associated with nitrification and denitrification and favor N retention. Mixed plantations could also allow an increase in soil C and N stocks without losing the source of income that teak trees represent for local communities.

19.
FEMS Microbiol Ecol ; 80(2): 479-87, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22283841

RESUMO

Mexico is a center of diversity for pines, but few studies have examined the ectomycorrhizal (ECM) fungal communities associated with pines in this country. We investigated the ECM communities associated with Pinus montezumae seedlings and mature trees in neotropical forests of central Mexico and compared their structure and species composition. Root tips were sampled on both planted seedlings and naturally occurring adult trees. A total of 42 ECM operational taxonomic units (OTUs) was found on P. montezumae. Diversity and similarity indices showed that community structure was similar for both plant growth stages, but phylogenetic diversity and Chao-estimated richness were higher for seedlings. Species composition differed between communities. The dominant OTUs belonged to the families Atheliaceae, Cortinariaceae, and Sebacinaceae, although different taxa appeared to colonize seedlings and adults. Only 12 OTUs were shared between seedlings and adults, which suggests that ECM fungi which colonize seedlings are still not fully incorporated into mycelial networks and that ECM taxa colonizing young individuals of P. montezumae are likely to come from fungal propagules. Intra-generic diversity could be an insurance mechanism to maintain forest productivity under stressed conditions. This is the first report describing the abundance of Atheliaceae in tree roots in neotropical ecosystems.


Assuntos
Micorrizas/classificação , Pinus/microbiologia , Adulto , Ecossistema , Feminino , Humanos , México , Micorrizas/genética , Micorrizas/crescimento & desenvolvimento , Filogenia , Pinus/crescimento & desenvolvimento , Pinus/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Árvores/crescimento & desenvolvimento , Árvores/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...