Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Science ; 384(6695): 551-556, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38696562

RESUMO

Large ensembles of laser-cooled atoms interacting through infinite-range photon-mediated interactions are powerful platforms for quantum simulation and sensing. Here we realize momentum-exchange interactions in which pairs of atoms exchange their momentum states by collective emission and absorption of photons from a common cavity mode, a process equivalent to a spin-exchange or XX collective Heisenberg interaction. The momentum-exchange interaction leads to an observed all-to-all Ising-like interaction in a matter-wave interferometer. A many-body energy gap also emerges, effectively binding interferometer matter-wave packets together to suppress Doppler dephasing in analogy to Mössbauer spectroscopy. The tunable momentum-exchange interaction expands the capabilities of quantum interaction-enhanced matter-wave interferometry and may enable the realization of exotic behaviors, including simulations of superconductors and dynamical gauge fields.

2.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38543174

RESUMO

"Click reactions" are a very useful tool for the selective conjugation of different molecular subunits to produce complex structures in a simple way. In this paper, we present the application of Cu(I)-catalyzed biorthogonal reactions between alkynes and azides to the indirect radiofluorination of an estradiol derivative with potential applications in estrogen receptor imaging. The procedure was fully developed on an automated synthesis platform, and conditions were optimized to achieve the desired product with a reasonable yield without precipitation. Although the biological results were not adequate for a potential radiopharmaceutical, the outcome of this work is valuable since the use of automated platforms is required for the reliable and reproducible preparation of PET radiopharmaceuticals in GMP conditions while limiting the radiation dose rates to the personnel.

3.
Phys Rev Lett ; 132(3): 033601, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38307070

RESUMO

We describe a method to create and store scalable and long-lived entangled spin-squeezed states within a manifold of many-body cavity dark states using collective emission of light from multilevel atoms inside an optical cavity. We show that the system can be tuned to generate squeezing in a dark state where it will be immune to superradiance. We also show more generically that squeezing can be generated using a combination of superradiance and coherent driving in a bright state, and subsequently be transferred via single-particle rotations to a dark state where squeezing can be stored. Our findings, readily testable in current optical cavity experiments with alkaline-earth-like atoms, can open a path for dissipative generation and storage of metrologically useful states in optical transitions.

4.
Nature ; 625(7996): 679-684, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38267683

RESUMO

In conventional Bardeen-Cooper-Schrieffer superconductors1, electrons with opposite momenta bind into Cooper pairs due to an attractive interaction mediated by phonons in the material. Although superconductivity naturally emerges at thermal equilibrium, it can also emerge out of equilibrium when the system parameters are abruptly changed2-8. The resulting out-of-equilibrium phases are predicted to occur in real materials and ultracold fermionic atoms, but not all have yet been directly observed. Here we realize an alternative way to generate the proposed dynamical phases using cavity quantum electrodynamics (QED). Our system encodes the presence or absence of a Cooper pair in a long-lived electronic transition in 88Sr atoms coupled to an optical cavity and represents interactions between electrons as photon-mediated interactions through the cavity9,10. To fully explore the phase diagram, we manipulate the ratio between the single-particle dispersion and the interactions after a quench and perform real-time tracking of the subsequent dynamics of the superconducting order parameter using nondestructive measurements. We observe regimes in which the order parameter decays to zero (phase I)3,4, assumes a non-equilibrium steady-state value (phase II)2,3 or exhibits persistent oscillations (phase III)2,3. This opens up exciting prospects for quantum simulation, including the potential to engineer unconventional superconductors and to probe beyond mean-field effects like the spectral form factor11,12, and for increasing the coherence time for quantum sensing.

5.
Phys Rev Lett ; 131(15): 150401, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37897760

RESUMO

Using a recently developed extension of the time-dependent variational principle for matrix product states, we evaluate the dynamics of 2D power-law interacting XXZ models, implementable in a variety of state-of-the-art experimental platforms. We compute the spin squeezing as a measure of correlations in the system, and compare to semiclassical phase-space calculations utilizing the discrete truncated Wigner approximation (DTWA). We find the latter efficiently and accurately captures the scaling of entanglement with system size in these systems, despite the comparatively resource-intensive tensor network representation of the dynamics. We also compare the steady-state behavior of DTWA to thermal ensemble calculations with tensor networks. Our results open a way to benchmark dynamical calculations for two-dimensional quantum systems, and allow us to rigorously validate recent predictions for the generation of scalable entangled resources for metrology in these systems.

6.
Phys Rev Lett ; 131(5): 053001, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37595247

RESUMO

We study the nonequilibrium dynamics of dipoles confined in multiple stacked two-dimensional layers realizing a long-range interacting quantum spin 1/2 XXX model. We demonstrate that strong in-plane interactions can protect a manifold of collective layer dynamics. This then allows us to map the many-body spin dynamics to bosonic models. In a bilayer configuration we show how to engineer the paradigmatic two-mode squeezing Hamiltonian known from quantum optics, resulting in exponential production of entangled pairs and generation of metrologically useful entanglement from initially prepared product states. In multilayer configurations we engineer a bosonic variant of the Kitaev model displaying chiral propagation along the layer direction. Our study illustrates how the control over interactions, lattice geometry, and state preparation in interacting dipolar systems uniquely afforded by AMO platforms such as Rydberg and magnetic atoms, polar molecules, or trapped ions allows for the control over the temporal and spatial propagation of correlations for applications in quantum sensing and quantum simulation.

7.
Nature ; 621(7980): 740-745, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648868

RESUMO

The control over quantum states in atomic systems has led to the most precise optical atomic clocks so far1-3. Their sensitivity is bounded at present by the standard quantum limit, a fundamental floor set by quantum mechanics for uncorrelated particles, which can-nevertheless-be overcome when operated with entangled particles. Yet demonstrating a quantum advantage in real-world sensors is extremely challenging. Here we illustrate a pathway for harnessing large-scale entanglement in an optical transition using 1D chains of up to 51 ions with interactions that decay as a power-law function of the ion separation. We show that our sensor can emulate many features of the one-axis-twisting (OAT) model, an iconic, fully connected model known to generate scalable squeezing4 and Greenberger-Horne-Zeilinger-like states5-8. The collective nature of the state manifests itself in the preservation of the total transverse magnetization, the reduced growth of the structure factor, that is, spin-wave excitations (SWE), at finite momenta, the generation of spin squeezing comparable with OAT (a Wineland parameter9,10 of -3.9 ± 0.3 dB for only N = 12 ions) and the development of non-Gaussian states in the form of multi-headed cat states in the Q-distribution. We demonstrate the metrological utility of the states in a Ramsey-type interferometer, in which we reduce the measurement uncertainty by -3.2 ± 0.5 dB below the standard quantum limit for N = 51 ions.

8.
Phys Rev Lett ; 130(14): 143002, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37084438

RESUMO

We propose a general protocol for on-demand generation of robust entangled states of nuclear and/or electron spins of ultracold ^{1}Σ and ^{2}Σ polar molecules using electric dipolar interactions. By encoding a spin-1/2 degree of freedom in a combined set of spin and rotational molecular levels, we theoretically demonstrate the emergence of effective spin-spin interactions of the Ising and XXZ forms, enabled by efficient magnetic control over electric dipolar interactions. We show how to use these interactions to create long-lived cluster and squeezed spin states.

9.
Phys Rev Lett ; 130(11): 113202, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-37001062

RESUMO

We propose to simulate bosonic pair creation using large arrays of long-lived dipoles with multilevel internal structure coupled to an undriven optical cavity. Entanglement between the atoms, generated by the exchange of virtual photons through a common cavity mode, grows exponentially fast and is described by two-mode squeezing of effective bosonic quadratures. The mapping between an effective bosonic model and the natural spin description of the dipoles allows us to realize the analog of optical homodyne measurements via straightforward global rotations and population measurements of the electronic states, and we propose to exploit this for quantum-enhanced sensing of an optical phase (common and differential between two ensembles). We discuss a specific implementation based on Sr atoms and show that our sensing protocol is robust to sources of decoherence intrinsic to cavity platforms. Our proposal can open unique opportunities for next-generation optical atomic clocks.

10.
Nature ; 613(7943): 262-267, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36631646

RESUMO

Exchange-antisymmetric pair wavefunctions in fermionic systems can give rise to unconventional superconductors and superfluids1-3. The realization of these states in controllable quantum systems, such as ultracold gases, could enable new types of quantum simulations4-8, topological quantum gates9-11 and exotic few-body states12-15. However, p-wave and other antisymmetric interactions are weak in naturally occurring systems16,17, and their enhancement via Feshbach resonances in ultracold systems has been limited by three-body loss18-24. Here we create isolated pairs of spin-polarized fermionic atoms in a multiorbital three-dimensional optical lattice. We spectroscopically measure elastic p-wave interaction energies of strongly interacting pairs of atoms near a magnetic Feshbach resonance. The interaction strengths are widely tunable by the magnetic field and confinement strength, and yet collapse onto a universal curve when rescaled by the harmonic energy and length scales of a single lattice site. The absence of three-body processes enables the observation of elastic unitary p-wave interactions, as well as coherent oscillations between free-atom and interacting-pair states. All observations are compared both to an exact solution using a p-wave pseudopotential and to numerical solutions using an ab initio interaction potential. The understanding and control of on-site p-wave interactions provides a necessary component for the assembly of multiorbital lattice models25,26 and a starting point for investigations of how to protect such systems from three-body recombination in the presence of tunnelling, for instance using Pauli blocking and lattice engineering27,28.

11.
Sci Adv ; 8(41): eadc9242, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36223457

RESUMO

Engineering a Hamiltonian system with tunable interactions provides opportunities to optimize performance for quantum sensing and explore emerging phenomena of many-body systems. An optical lattice clock based on partially delocalized Wannier-Stark states in a gravity-tilted shallow lattice supports superior quantum coherence and adjustable interactions via spin-orbit coupling, thus presenting a powerful spin model realization. The relative strength of the on-site and off-site interactions can be tuned to achieve a zero density shift at a "magic" lattice depth. This mechanism, together with a large number of atoms, enables the demonstration of the most stable atomic clock while minimizing a key systematic uncertainty related to atomic density. Interactions can also be maximized by driving off-site Wannier-Stark transitions, realizing a ferromagnetic to paramagnetic dynamical phase transition.

12.
Rep Prog Phys ; 85(11)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36075190

RESUMO

We overview the concept of dynamical phase transitions (DPTs) in isolated quantum systems quenched out of equilibrium. We focus on non-equilibrium transitions characterized by an order parameter, which features qualitatively distinct temporal behavior on the two sides of a certain dynamical critical point. DPTs are currently mostly understood as long-lived prethermal phenomena in a regime where inelastic collisions are incapable to thermalize the system. The latter enables the dynamics to substain phases that explicitly break detailed balance and therefore cannot be encompassed by traditional thermodynamics. Our presentation covers both cold atoms as well as condensed matter systems. We revisit a broad plethora of platforms exhibiting pre-thermal DPTs, which become theoretically tractable in a certain limit, such as for a large number of particles, large number of order parameter components, or large spatial dimension. The systems we explore include, among others, quantum magnets with collective interactions,ϕ4quantum field theories, and Fermi-Hubbard models. A section dedicated to experimental explorations of DPTs in condensed matter and AMO systems connects this large variety of theoretical models.

13.
Phys Rev Lett ; 129(2): 023401, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35867449

RESUMO

We perform collective spin measurements to study the buildup of two-body correlations between ≈10^{4} spin s=3 chromium atoms pinned in a 3D optical lattice. The spins interact via long range and anisotropic dipolar interactions. From the fluctuations of total magnetization, measured at the standard quantum limit, we estimate the dynamical growth of the connected pairwise correlations associated with magnetization. The quantum nature of the correlations is assessed by comparisons with analytical short- and long-time expansions and numerical simulations. Our Letter shows that measuring fluctuations of spin populations for s>1/2 spins provides new ways to characterize correlations in quantum many-body systems.

14.
Science ; 375(6586): 1299-1303, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35298246

RESUMO

Microscopic control over polar molecules with tunable interactions enables the realization of distinct quantum phenomena. Using an electric field gradient, we demonstrated layer-resolved state preparation and imaging of ultracold potassium-rubidium molecules confined to two-dimensional planes in an optical lattice. The rotational coherence was maximized by rotating the electric field relative to the light polarization for state-insensitive trapping. Spatially separated molecules in adjacent layers interact through dipolar spin exchange of rotational angular momentum; by adjusting these interactions, we regulated the local chemical reaction rate. The resonance width of the exchange process vastly exceeded the dipolar interaction energy, an effect attributed to thermal energy. This work realized precise control of interacting molecules, enabling electric field microscopy on subwavelength scales and allowing access to unexplored physics in two-dimensional systems.

15.
Phys Rev Lett ; 128(9): 093001, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35302810

RESUMO

The observation of Pauli blocking of atomic spontaneous decay via direct measurements of the atomic population requires the use of long-lived atomic gases where quantum statistics, atom recoil, and cooperative radiative processes are all relevant. We develop a theoretical framework capable of simultaneously accounting for all these effects in the many-body quantum degenerate regime. We apply it to atoms in a single 2D pancake or arrays of pancakes featuring an effective Λ level structure (one excited and two degenerate ground states). We identify a parameter window in which a factor of 2 extension in the atomic lifetime clearly attributable to Pauli blocking should be experimentally observable in deeply degenerate gases with ∼10^{3} atoms. We experimentally observe a suppressed excited-state decay rate, fully consistent with the theory prediction of an enhanced excited-state lifetime, on the ^{1}S_{0}-^{3}P_{1} transition in ^{87}Sr atoms.

16.
Phys Rev Lett ; 127(21): 210401, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34860098

RESUMO

We propose a quantum enhanced interferometric protocol for gravimetry and force sensing using cold atoms in an optical lattice supported by a standing-wave cavity. By loading the atoms in partially delocalized Wannier-Stark states, it is possible to cancel the undesirable inhomogeneities arising from the mismatch between the lattice and cavity fields and to generate spin squeezed states via a uniform one-axis twisting model. The quantum enhanced sensitivity of the states is combined with the subsequent application of a compound pulse sequence that allows us to separate atoms by several lattice sites. This, together with the capability to load small atomic clouds in the lattice at micrometric distances from a surface, make our setup ideal for sensing short-range forces. We show that for arrays of 10^{4} atoms, our protocol can reduce the required averaging time by a factor of 10 compared to unentangled lattice-based interferometers after accounting for primary sources of decoherence.

17.
Phys Rev Lett ; 127(14): 143401, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34652195

RESUMO

We consider the nonequilibrium orbital dynamics of spin-polarized ultracold fermions in the first excited band of an optical lattice. A specific lattice depth and filling configuration is designed to allow the p_{x} and p_{y} excited orbital degrees of freedom to act as a pseudospin. Starting from the full Hamiltonian for p-wave interactions in a periodic potential, we derive an extended Hubbard-type model that describes the anisotropic lattice dynamics of the excited orbitals at low energy. We then show how dispersion engineering can provide a viable route to realizing collective behavior driven by p-wave interactions. In particular, Bragg dressing and lattice depth can reduce single-particle dispersion rates, such that a collective many-body gap is opened with only moderate Feshbach enhancement of p-wave interactions. Physical insight into the emergent gap-protected collective dynamics is gained by projecting the Hamiltonian into the Dicke manifold, yielding a one-axis twisting model for the orbital pseudospin that can be probed using conventional Ramsey-style interferometry. Experimentally realistic protocols to prepare and measure the many-body dynamics are discussed, including the effects of band relaxation, particle loss, spin-orbit coupling, and doping.

18.
Science ; 373(6555): 673-678, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34353950

RESUMO

Fully controllable ultracold atomic systems are creating opportunities for quantum sensing, yet demonstrating a quantum advantage in useful applications by harnessing entanglement remains a challenging task. Here, we realize a many-body quantum-enhanced sensor to detect displacements and electric fields using a crystal of ~150 trapped ions. The center-of-mass vibrational mode of the crystal serves as a high-Q mechanical oscillator, and the collective electronic spin serves as the measurement device. By entangling the oscillator and collective spin and controlling the coherent dynamics via a many-body echo, a displacement is mapped into a spin rotation while avoiding quantum back-action and thermal noise. We achieve a sensitivity to displacements of 8.8 ± 0.4 decibels below the standard quantum limit and a sensitivity for measuring electric fields of 240 ± 10 nanovolts per meter in 1 second. Feasible improvements should enable the use of trapped ions in searches for dark matter.

19.
Phys Rev Lett ; 126(17): 173601, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33988424

RESUMO

We propose to simulate dynamical phases of a BCS superconductor using an ensemble of cold atoms trapped in an optical cavity. Effective Cooper pairs are encoded via the internal states of the atoms, and attractive interactions are realized via the exchange of virtual photons between atoms coupled to a common cavity mode. Control of the interaction strength combined with a tunable dispersion relation of the effective Cooper pairs allows exploration of the full dynamical phase diagram of the BCS model as a function of system parameters and the prepared initial state. Our proposal paves the way for the study of the nonequilibrium features of quantum magnetism and superconductivity by harnessing atom-light interactions in cold atomic gases.

20.
Phys Rev Lett ; 126(13): 133603, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33861099

RESUMO

We study the far-from-equilibrium dynamical regimes of a many-body spin-boson model with disordered couplings relevant for cavity QED and trapped ion experiments, using the discrete truncated Wigner approximation. We focus on the dynamics of spin observables upon varying the disorder strength and the frequency of the photons, finding that the latter can considerably alter the structure of the system's dynamical responses. When the photons evolve at a similar rate as the spins, they can induce qualitatively distinct frustrated dynamics characterized by either logarithmic or algebraically slow relaxation. The latter illustrates resilience of glassylike dynamics in the presence of active photonic degrees of freedom, suggesting that disordered quantum many-body systems with resonant photons or phonons can display a rich diagram of nonequilibrium responses, with near future applications for quantum information science.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...