Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 8: 1584, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28955370

RESUMO

Corn poppy (Papaver rhoeas), the most problematic broadleaf weed in winter cereals in Southern Europe, has developed resistance to the widely-used herbicide, 2,4-D. The first reported resistance mechanism in this species to 2,4-D was reduced translocation from treated leaves to the rest of the plant. However, the presence of other non-target site resistance (NTSR) mechanisms has not been investigated up to date. Therefore, the main objective of this research was to reveal if enhanced 2,4-D metabolism is also present in two Spanish resistant (R) populations to synthetic auxins. With this aim, HPLC experiments at two 2,4-D rates (600 and 2,400 g ai ha-1) were conducted to identify and quantify the metabolites produced and evaluate possible differences in 2,4-D degradation between resistant (R) and susceptible (S) plants. Secondarily, to determine the role of cytochrome P450 in the resistance response, dose-response experiments were performed using malathion as its inhibitor. Three populations were used: S, only 2,4-D R (R-703) and multiple R to 2,4-D and ALS inhibitors (R-213). HPLC studies indicated the presence of two hydroxy metabolites in these R populations in shoots and roots, which were not detected in S plants, at both rates. Therefore, enhanced metabolism becomes a new NTSR mechanism in these two P. rhoeas populations from Spain. Results from the dose-response experiments also showed that pre-treatment of R plants with the cytochrome P450 (P450) inhibitor malathion reversed the phenotype to 2,4-D from resistant to susceptible in both R populations. Therefore, it could be hypothesized that a malathion inhibited P450 is responsible of the formation of the hydroxy metabolites detected in the metabolism studies. This and previous research indicate that two resistant mechanisms to 2,4-D could be present in populations R-703 and R-213: reduced translocation and enhanced metabolism. Future experiments are required to confirm these hypotheses, understand the role of P450, and the relationship between both NTSR mechanisms. On this basis, selection pressure with synthetic auxins bears the risk of promoting the evolution enhanced metabolism in Papaver rhoeas.

2.
Pestic Biochem Physiol ; 138: 57-65, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28456305

RESUMO

Target-site and non-target-site resistance mechanisms to ALS inhibitors were investigated in multiple resistant (tribenuron-methyl and 2,4-D) and only 2,4-D resistant, Spanish corn poppy populations. Six amino-acid replacements at the Pro197 position (Ala197, Arg197, His197, Leu197, Thr197 and Ser197) were found in three multiple resistant populations. These replacements were responsible for the high tribenuron-methyl resistance response, and some of them, especially Thr197 and Ser197, elucidated the cross-resistant pattern for imazamox and florasulam, respectively. Mutations outside of the conserved regions of the ALS gene (Gly427 and Leu648) were identified, but not related to resistance response. Higher mobility of labeled tribenuron-methyl in plants with multiple resistance was, however, similar to plants with only 2,4-D resistance, indicating the presence of non-target-site resistance mechanisms (NTSR). Metabolism studies confirmed the presence of a hydroxy imazamox metabolite in one of the populations. Lack of correlation between phenotype and genotype in plants treated with florasulam or imazamox, non-mutated plants surviving imazamox, tribenuron-methyl translocation patterns and the presence of enhanced metabolism revealed signs of the presence of NTSR mechanisms to ALS inhibitors in this species. On this basis, selection pressure with ALS non-SU inhibitors bears the risk of promoting the evolution of NTSR mechanisms in corn poppy.


Assuntos
Acetolactato Sintase/antagonistas & inibidores , Resistência a Herbicidas , Herbicidas/farmacologia , Papaver/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Herbicidas/administração & dosagem , Papaver/enzimologia
3.
Pestic Biochem Physiol ; 133: 67-72, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27742363

RESUMO

In southern Europe, the intensive use of 2,4-D (2,4-dichlorophenoxyacetic acid) and tribenuron-methyl in cereal crop systems has resulted in the evolution of resistant (R) corn poppy (Papaver rhoeas L.) biotypes. Experiments were conducted to elucidate (1) the resistance response to these two herbicides, (2) the cross-resistant pattern to other synthetic auxins and (3) the physiological basis of the auxin resistance in two R (F-R213 and D-R703) populations. R plants were resistant to both 2,4-D and tribenuron-methyl (F-R213) or just to 2,4-D (D-R703) and both R populations were also resistant to dicamba and aminopyralid. Results from absorption and translocation experiment revealed that R plants translocated less [14C]-2,4-D than S plants at all evaluation times. There was between four and eight-fold greater ethylene production in S plants treated with 2,4-D, than in R plants. Overall, these results suggest that reduced 2,4-D translocation is the resistance mechanism in synthetic auxins R corn poppy populations and this likely leads to less ethylene production and greater survival in R plants.


Assuntos
Ácido 2,4-Diclorofenoxiacético/farmacocinética , Ácido 2,4-Diclorofenoxiacético/toxicidade , Resistência a Herbicidas/fisiologia , Herbicidas/farmacocinética , Herbicidas/toxicidade , Papaver/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Etilenos/biossíntese , Papaver/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...