Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chronic Dis Transl Med ; 9(3): 238-249, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37711863

RESUMO

Background: Liver ischemia/reperfusion (I/R) injury is a complex and multifactorial pathophysiological process. It is well recognized that the membrane permeability transition pore (mPTP) opening of mitochondria plays a crucial role in cell death after I/R injury. Cyclophilin D (CypD) is a critical positive regulator of mPTP. However, the effect of CypD on the pathogenesis of liver I/R injury and whether CypD is a potential therapeutic target are still unclear. Methods: We constructed liver-specific CypD knockout and AAV8-peptidyl prolyl isomerase F (PPIF) overexpression mice. Then, a 70% liver I/R injury model was established in mice, with 90 min of ischemia and 6 h of reperfusion. The liver function was detected by the level of serum glutamic pyruvic transaminase (alanine transaminase) and glutamic oxaloacetic transaminase (aspartate aminotransferase), the liver damage score and degree of necrosis were measured by hematoxylin and eosin (H&E) staining of liver tissues. Reactive oxygen species (ROS) staining, apoptosis, and autophagy-related molecules were used to detect apoptosis and autophagy during liver I/R. Results: The liver-specific knockout of CypD alleviated necrosis and dysfunction in liver I/R injury, by reducing the excessive production of ROS, and inhibiting cell apoptosis and autophagy. On the contrary, overexpression of CypD exacerbated I/R-induced liver damage. Conclusion: We found that the downregulation of CypD expression alleviated liver I/R injury by reducing apoptosis and autophagy through caspase-3/Beclin1 crosstalk; in contrast, the upregulation of CypD expression aggravated liver I/R injury. Therefore, interfering with the expression of CypD seems to be a promising treatment for liver I/R injury.

2.
Int J Biol Macromol ; 222(Pt B): 1963-1973, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36252624

RESUMO

BACKGROUND: Obesity, fatty liver, type 2 diabetes, and Non-alcoholic fatty liver disease (NAFLD) are all metabolic diseases caused by excess food consumption. Existing drug molecules had negative side effects and caused other diseases to develop (Orlistat causes angioedema, and menstrual irregularities; megestrol acetate causes hypertension, and insomnia). By enhancing lipid consumption and increasing nonshivering thermogenesis, targeting mitochondrial uncoupling protein-1 (UCP1) expression in adipocytes could be an auspicious treatment strategy against obesity or metabolic disorders associated with obesity. METHODS: We used previously produced UCP1-A-GFP reporter cell lines in this investigation to find new pharmacological compounds against obesity or metabolic syndrome, which we then tested in cellular analysis, cytotoxicity, mitochondrial function, mitochondrial DNA quantification, mitochondrial ATP production, and in-silico models. RESULTS: Baicalein was discovered to play a critical role in obesity prevention via altering mitochondrial function. Baicalein lowers ATP generation while increasing considerable UCP1 gene expression in brown adipocytes. As a result, cellular thermogenesis is boosted. The HEK293T cell line is harmless by baicalein. The investigation by the in-silico study revealed drug-protein interaction and UCP1 binding. Thus, our research clarifies baicalein's therapeutic role in metabolic and obesity-related illnesses via modulating mitochondrial activity (Supplementary Fig. 2). CONCLUSIONS: Further studies are required in both murine and human models to understand the full mechanism of action by mitochondrial modulation. Drug development investigation also requires to development of a precise formulation.


Assuntos
Adipócitos Marrons , Diabetes Mellitus Tipo 2 , Humanos , Camundongos , Animais , Adipócitos Marrons/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Tecido Adiposo Marrom/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células HEK293 , Mitocôndrias , Obesidade/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Mitocondriais/metabolismo
3.
Pharm Res ; 39(4): 611-629, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35378698

RESUMO

PURPOSE: This review aims to provide a precise perceptive of the insulin-degrading enzyme (IDE) and its relationship to type 2 diabetes (T2D), Alzheimer's disease (AD), obesity, and cardiovascular diseases. The purpose of the current study was to provide clear idea of treating prevalent diseases such as T2D, and AD by molecular pharmacological therapeutics rather than conventional medicinal therapy. METHODS: To achieve the aims, molecular docking was performed using several softwares such as LIGPLOT+, Python, and Protein-Ligand Interaction Profiler with corresponding tools. RESULTS: The IDE is a large zinc-metalloprotease that breakdown numerous pathophysiologically important extracellular substrates, comprising amyloid ß-protein (Aß) and insulin. Recent studies demonstrated that dysregulation of IDE leads to develop AD and T2D. Specifically, IDE regulates circulating insulin in a variety of organs via a degradation-dependent clearance mechanism. IDE is unique because it was subjected to allosteric activation and mediated via an oligomer structure. CONCLUSION: In this review, we summarised the factors that modulate insulin reformation by IDE and interaction of IDE and some recent reports on IDE inhibitors against AD and T2D. We also highlighted the latest signs of progress of the function of IDE and challenges in advancing IDE- targetted therapies against T2D and AD.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Insulisina , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Doença Crônica , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Insulina/metabolismo , Insulisina/química , Insulisina/metabolismo , Insulisina/uso terapêutico , Simulação de Acoplamento Molecular
4.
J Genet Genomics ; 47(11): 672-680, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33451939

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based screening using various guide RNA (gRNA) libraries has been executed to identify functional components for a wide range of phenotypes with regard to numerous cell types and organisms. Using data from public CRISPR/Cas9-based screening experiments, we found that the sequences of gRNAs in the library influence CRISPR/Cas9-based screening. As building a standard strategy for correcting results of all gRNA libraries is impractical, we developed SeqCor, an open-source programming bundle that enables researchers to address the result bias potentially triggered by the composition of gRNA sequences via the organization of gRNA in the library used in CRISPR/Cas9-based screening. Furthermore, SeqCor completely computerizes the extraction of sequence features that may influence single-guide RNA knockout efficiency using a machine learning approach. Taken together, we have developed a software program bundle that ought to be beneficial to the CRISPR/Cas9-based screening platform.


Assuntos
Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , RNA Guia de Cinetoplastídeos/genética , Software , Algoritmos , Sequência de Bases/genética , Edição de Genes/métodos , Biblioteca Gênica , Humanos , Aprendizado de Máquina
5.
EBioMedicine ; 37: 344-355, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30348622

RESUMO

BACKGROUND: The pharmacological activation of thermogenesis in brown adipose tissue has long been considered promising strategies to treat obesity. However, identification of safe and effective agents remains a challenge. In this study, we addressed this challenge by developing a cellular system with a fluorescence readout, and applied in a high-throughput manner to screen for FDA-approved drugs that may activate endogenous UCP1 expression in adipocytes. METHODS: We have generated a Ucp1-2A-GFP reporter mouse, in which GFP intensity serves as a surrogate of the endogenous expression level of UCP1 protein; and immortalized brown adipocytes were derived from this mouse model and applied in drug screening. Candidate drugs were further tested in mouse models either fed with normal chow or high fat diet to induce obesity. FINDINGS: By using the cellular screening platform, we identified a group of FDA-approved drugs that can upregulate UCP1 expression in brown adipocyte, including previously known UCP1 activators and new candidate drugs. Further studies focusing on a previously unreported drug-sutent, revealed that sutent treatment could increase the energy expenditure and inhibit lipid synthesis in mouse adipose and liver tissues, resulting in improved metabolism and resistance to obesity. INTERPRETATION: This study offered an easy-to-use cellular screening system for UCP1 activators, and provided a candidate list of FDA-approved drugs that can potentially treat obesity. Further study of these candidates may shed new light on the drug discovery towards obesity. FUND: National Key Research and Development Program and the Strategic Priority Research Program of the Chinese Academy of Sciences, etc. (250 words).


Assuntos
Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Desacopladora 1/biossíntese , Adipócitos Marrons/patologia , Tecido Adiposo Marrom/patologia , Animais , Linhagem Celular Transformada , Aprovação de Drogas , Avaliação Pré-Clínica de Medicamentos , Camundongos , Camundongos Transgênicos , Proteína Desacopladora 1/genética , Estados Unidos , United States Food and Drug Administration
6.
J Anim Physiol Anim Nutr (Berl) ; 101(2): 222-228, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27450531

RESUMO

The response of broiler chickens to 3 levels of sunflower meal and 2 levels of NSP-ase enzyme combination (with and without) was investigated in 3 × 2 factorial arrangement under complete randomized design (CRD). A total of 240 Hubbard broiler chicks were fed on practical mash diets having 2950 kcal of ME and 21% CP from 1 to 42 days of age. The BW gain was not significantly reduced when 25% SFM was added in the diets during 1 to 42 days of age. Supplementation of NSP-ase in broiler diets (day 1-42 overall) demonstrated non-significant differences (p < 0.05) across the treatments in terms of FI and BWG. The difference in feed:gain at 15% or 20% SFM was observed to be non-significant. Replacement of SBM with SFM or inclusion of SFM at higher level (25%) increased/deteriorated FCR. The addition of exogenous NSP-ase showed a significant improvement (p < 0.01) in feed:gain. The improvement was clearly demonstrated when SFM was added to the experimental diet at 15% or even 20%. Supplementation of NSP-ase at the 25% inclusion level could not, however, sustain the beneficial effect, which was possibly due to excessively high dietary CF. No difference was noted across the treatments regarding carcass response. Relative gizzard weight and intestinal weight were observed to be improved in birds consuming higher levels of SFM (p = 0.00). The digestibility of CF was observed to improve when SFM was used at 20% and 25% in the diets. No improvement in the digestibility of CF was observed with NSP-ase supplementation, which meant other factors were clearly involved. Supplementation of NSP-ase improved FCR up to 20% SFM. At 25% SFM, no improvement in the digestibility of CF was observed with NSP-ase supplementation.


Assuntos
Ração Animal/análise , Galinhas/fisiologia , Dieta/veterinária , Suplementos Nutricionais , Enzimas/administração & dosagem , Helianthus , Fenômenos Fisiológicos da Nutrição Animal , Animais , Digestão/efeitos dos fármacos , Enzimas/metabolismo , Enzimas/farmacologia , Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...