Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 371(3): 633-641, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31578258

RESUMO

N-methyl-d-aspartate (NMDA) receptor-dependent long-term potentiation (LTP) is an established cellular model underlying learning and memory, and involves intracellular signaling mediated by the second messenger cyclic guanosine monophosphate (cGMP). As phosphodiesterase (PDE)9A selectively hydrolyses cGMP in areas of the brain related to cognition, PDE9A inhibitors may improve cognitive function by enhancing NMDA receptor-dependent LTP. This study aimed to pharmacologically characterize BI 409306, a novel PDE9A inhibitor, using in vitro assays and in vivo determination of cGMP levels in the brain. Further, the effects of BI 409306 on synaptic plasticity evaluated by LTP in ex vivo hippocampal slices and on cognitive performance in rodents were also investigated. In vitro assays demonstrated that BI 409306 is a potent and selective inhibitor of human and rat PDE9A with mean concentrations at half-maximal inhibition (IC50) of 65 and 168 nM. BI 409306 increased cGMP levels in rat prefrontal cortex and cerebrospinal fluid and attenuated a reduction in mouse striatum cGMP induced by the NMDA-receptor antagonist MK-801. In ex vivo rat brain slices, BI 409306 enhanced LTP induced by both weak and strong tetanic stimulation. Treatment of mice with BI 409306 reversed MK-801-induced working memory deficits in a T-maze spontaneous-alternation task and improved long-term memory in an object recognition task. These findings suggest that BI 409306 is a potent and selective inhibitor of PDE9A. BI 409306 shows target engagement by increasing cGMP levels in brain, facilitates synaptic plasticity as demonstrated by enhancement of hippocampal LTP, and improves episodic and working memory function in rodents. SIGNIFICANCE STATEMENT: This preclinical study demonstrates that BI 409306 is a potent and selective PDE9A inhibitor in rodents. Treatment with BI 409306 increased brain cGMP levels, promoted long-term potentiation, and improved episodic and working memory performance in rodents. These findings support a role for PDE9A in synaptic plasticity and cognition. The potential benefits of BI 409306 are currently being investigated in clinical trials.


Assuntos
Química Encefálica/efeitos dos fármacos , GMP Cíclico/análise , Memória/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Pirazóis/farmacocinética , Pirimidinas/farmacocinética , 3',5'-AMP Cíclico Fosfodiesterases/antagonistas & inibidores , Animais , GMP Cíclico/líquido cefalorraquidiano , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pirazóis/farmacologia , Pirimidinas/farmacologia , Ratos , Ratos Wistar
2.
PLoS One ; 13(3): e0193970, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29543836

RESUMO

Inflammation plays an important role in the pathogenesis of ischemic stroke including an acute and prolonged inflammatory process. The role of neutrophil granulocytes as first driver of the immune reaction from the blood site is under debate due to controversial findings. In bone marrow chimeric mice we were able to study the dynamics of tdTomato-expressing neutrophils and GFP-expressing microglia after photothrombosis using intravital two-photon microscopy. We demonstrate the infiltration of neutrophils into the brain parenchyma and confirm a long-lasting contact between neutrophils and microglia as well as an uptake of neutrophils by microglia clearing the brain from peripheral immune cells.


Assuntos
Microglia/patologia , Neutrófilos/patologia , Acidente Vascular Cerebral/patologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Granulócitos/patologia , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos/fisiologia
3.
Restor Neurol Neurosci ; 35(1): 87-103, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28059802

RESUMO

The already established and widely used intravenous application of recombinant tissue plasminogen activator as a re-opening strategy for acute vessel occlusion in ischemic stroke was recently added by mechanical thrombectomy, representing a fundamental progress in evidence-based medicine to improve the patient's outcome. This has been paralleled by a swift increase in our understanding of pathomechanisms underlying many neurovascular diseases and most prevalent forms of dementia. Taken together, these current advances offer the potential to overcome almost two decades of marginally successful translational research on stroke and dementia, thereby spurring the entire field of translational neuroscience. Moreover, they may also pave the way for the renaissance of classical neuroprotective paradigms.This review reports and summarizes some of the most interesting and promising recent achievements in neurovascular and dementia research. It highlights sessions from the 9th International Symposium on Neuroprotection and Neurorepair that have been discussed from April 19th to 22nd in Leipzig, Germany. To acknowledge the emerging culture of interdisciplinary collaboration and research, special emphasis is given on translational stories ranging from fundamental research on neurode- and -regeneration to late stage translational or early stage clinical investigations.


Assuntos
Transtornos Cerebrovasculares/diagnóstico , Transtornos Cerebrovasculares/terapia , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/terapia , Pesquisa Translacional Biomédica , Animais , Humanos
4.
Acta Neurobiol Exp (Wars) ; 76(1): 20-31, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27102915

RESUMO

Mitochondria have been suggested as a potential target for cytoprotective strategies. It has been shown that increased K+ uptake mediate by mitochondrial ATP-regulated potassium channels (mitoKATP channel) or large-conductance Ca2+-activated potassium channels (mitoBKCa channel) may provide protection in different models of cell death. Since recent findings demonstrated the presence of BKCa channels in neuronal mitochondria, the goal of the present study was to test the potential neuroprotective effects of BKCa channel modulators. Using organotypic hippocampal slice cultures exposed to glutamate, we demonstrated that preincubation of the slices with the BKCa channel opener NS1619 resulted in decreased neuronal cell death measured as reduced uptake of propidium iodide. This neuroprotective effect was reversed by preincubation with the BKCa channel inhibitors paxilline and Iberiotoxin (IbTx). Moreover, mitochondrial respiration measurements revealed that NS1619 induced an IbTx-sensitive increase in state 2 respiration of isolated brain mitochondria. In addition, electrophysiological patch-clamp studies confirmed the presence of BKCa channels in mitoplasts isolated from embryonic hippocampal cells. Taken together, our results confirm presence of BKCa channel in rat hippocampal neurons mitochondria and suggest putative role for mitoBKCa in neuroprotection.


Assuntos
Cálcio/metabolismo , Ácido Glutâmico/farmacologia , Hipocampo/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Animais , Hipocampo/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Canais de Potássio/fisiologia , Ratos Wistar , Técnicas de Cultura de Tecidos
5.
Neurobiol Aging ; 40: 98-102, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26973108

RESUMO

Soluble forms of oligomeric amyloid beta (AßO) are involved in the loss of synaptic plasticity and memory, especially in early phases of Alzheimer's disease. Stimulation of dopamine D1/D5 receptors (D1R/D5R) is known to increase surface expression of synaptic α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate subtype glutamate and N-methyl-D-aspartate subtype glutamate receptors and facilitates the induction of the late phase of long-term potentiation (LTP), probably via a related mechanism. In this study, we show that the D1/D5R agonist SKF38393 protects LTP of hippocampal CA1 synapses from the deleterious action of oligomeric amyloid beta. Unexpectedly, the D1R/D5R-mediated recovery of LTP is independent of protein kinase A or phospholipase C pathways. Instead, we found that the inhibition of Src-family tyrosine kinases completely abolished the protective effects of D1R/D5R stimulation in a cellular model of learning and memory.


Assuntos
2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Peptídeos beta-Amiloides/efeitos adversos , Agonistas de Dopamina/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Quinases da Família src/antagonistas & inibidores , Doença de Alzheimer/fisiopatologia , Animais , Região CA1 Hipocampal , Células Cultivadas , Masculino , Memória/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Receptores de Dopamina D1/fisiologia , Receptores de Dopamina D5/fisiologia , Solubilidade , Quinases da Família src/fisiologia
6.
Acta Neuropathol ; 129(2): 259-77, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25391494

RESUMO

Neuronal injury from ischemic stroke is aggravated by invading peripheral immune cells. Early infiltrates of neutrophil granulocytes and T-cells influence the outcome of stroke. So far, however, neither the timing nor the cellular dynamics of neutrophil entry, its consequences for the invaded brain area, or the relative importance of T-cells has been extensively studied in an intravital setting. Here, we have used intravital two-photon microscopy to document neutrophils and brain-resident microglia in mice after induction of experimental stroke. We demonstrated that neutrophils immediately rolled, firmly adhered, and transmigrated at sites of endothelial activation in stroke-affected brain areas. The ensuing neutrophil invasion was associated with local blood-brain barrier breakdown and infarct formation. Brain-resident microglia recognized both endothelial damage and neutrophil invasion. In a cooperative manner, they formed cytoplasmic processes to physically shield activated endothelia and trap infiltrating neutrophils. Interestingly, the systemic blockade of very-late-antigen-4 immediately and very effectively inhibited the endothelial interaction and brain entry of neutrophils. This treatment thereby strongly reduced the ischemic tissue injury and effectively protected the mice from stroke-associated behavioral impairment. Behavioral preservation was also equally well achieved with the antibody-mediated depletion of myeloid cells or specifically neutrophils. In contrast, T-cell depletion more effectively reduced the infarct volume without improving the behavioral performance. Thus, neutrophil invasion of the ischemic brain is rapid, massive, and a key mediator of functional impairment, while peripheral T-cells promote brain damage. Acutely depleting T-cells and inhibiting brain infiltration of neutrophils might, therefore, be a powerful early stroke treatment.


Assuntos
Isquemia Encefálica/imunologia , Integrina alfa4beta1/metabolismo , Microglia/fisiologia , Infiltração de Neutrófilos/fisiologia , Neutrófilos/fisiologia , Acidente Vascular Cerebral/imunologia , Animais , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/patologia , Encéfalo/imunologia , Encéfalo/patologia , Isquemia Encefálica/patologia , Adesão Celular/fisiologia , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia , Atividade Motora/fisiologia , Neutrófilos/patologia , Distribuição Aleatória , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/patologia
7.
Neuroimage ; 103: 171-180, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25234116

RESUMO

Electrical and optogenetic methods for brain stimulation are widely used in rodents for manipulating behavior and analyzing functional connectivities in neuronal circuits. High-resolution in vivo imaging of the global, brain-wide, activation patterns induced by these stimulations has remained challenging, in particular in awake behaving mice. We here mapped brain activation patterns in awake, intracranially self-stimulating mice using a novel protocol for single-photon emission computed tomography (SPECT) imaging of regional cerebral blood flow (rCBF). Mice were implanted with either electrodes for electrical stimulation of the medial forebrain bundle (mfb-microstim) or with optical fibers for blue-light stimulation of channelrhodopsin-2 expressing neurons in the ventral tegmental area (vta-optostim). After training for self-stimulation by current or light application, respectively, mice were implanted with jugular vein catheters and intravenously injected with the flow tracer 99m-technetium hexamethylpropyleneamine oxime (99mTc-HMPAO) during seven to ten minutes of intracranial self-stimulation or ongoing behavior without stimulation. The 99mTc-brain distributions were mapped in anesthetized animals after stimulation using multipinhole SPECT. Upon self-stimulation rCBF strongly increased at the electrode tip in mfb-microstim mice. In vta-optostim mice peak activations were found outside the stimulation site. Partly overlapping brain-wide networks of activations and deactivations were found in both groups. When testing all self-stimulating mice against all controls highly significant activations were found in the rostromedial nucleus accumbens shell. SPECT-imaging of rCBF using intravenous tracer-injection during ongoing behavior is a new tool for imaging regional brain activation patterns in awake behaving rodents providing higher spatial and temporal resolutions than 18F-2-fluoro-2-dexoyglucose positron emission tomography.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular/fisiologia , Optogenética/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Encéfalo/irrigação sanguínea , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Compostos Radiofarmacêuticos , Recompensa , Autoestimulação , Tecnécio Tc 99m Exametazima
8.
EMBO J ; 33(17): 1912-27, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25024434

RESUMO

Neuronal histone acetylation has been linked to memory consolidation, and targeting histone acetylation has emerged as a promising therapeutic strategy for neuropsychiatric diseases. However, the role of histone-modifying enzymes in the adult brain is still far from being understood. Here we use RNA sequencing to screen the levels of all known histone acetyltransferases (HATs) in the hippocampal CA1 region and find that K-acetyltransferase 2a (Kat2a)--a HAT that has not been studied for its role in memory function so far--shows highest expression. Mice that lack Kat2a show impaired hippocampal synaptic plasticity and long-term memory consolidation. We furthermore show that Kat2a regulates a highly interconnected hippocampal gene expression network linked to neuroactive receptor signaling via a mechanism that involves nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). In conclusion, our data establish Kat2a as a novel and essential regulator of hippocampal memory consolidation.


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , Histona Acetiltransferases/metabolismo , Memória , Animais , Região CA1 Hipocampal/enzimologia , Perfilação da Expressão Gênica , Histona Acetiltransferases/genética , Camundongos , Camundongos Knockout
9.
J Alzheimers Dis ; 42 Suppl 3: S305-13, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24898644

RESUMO

BACKGROUND: Cerebral small vessel disease (CSVD) in spontaneously hypertensive stroke prone rats (SHRSP) is accompanied by parenchymal amyloid-ß (Aß) deposition in the brain and by hypertensive nephropathy with tubulointerstitial damage. N-acetylcysteine (NAC) promotes blood-brain barrier (BBB) breakdown in SHRSP and may thus accelerate the failure of vascular and perivascular clearance of Aß. OBJECTIVE: In this study, we test the hypothesis that treatment with NAC increases the cerebral Aß load and improves renal damage in the SHRSP model. METHODS: A total of 46 SHRSP (ages 18-44 weeks) were treated daily with NAC (12 mg/kg body weight) and 74 no-treated age-matched SHRSP served as controls. The prevalence of parenchymal Aß load, IgG positive small vessels, and small perivascular bleeds was assessed in different brain regions. Tubulointerstitial kidney damage was assessed through a) the presence of erythrocytes in peritubular capillaries and b) tubular protein cylinders. RESULTS: SHRSP treated with NAC had an age-dependent increase of BBB breakdown (assessed by the presence of IgG positive small vessels) and small perivascular bleeds, mainly in the cortex. NAC significantly increased the Aß plaque load in the cortex while the number of parenchymal amyloid deposits in the remaining brain areas including basal ganglia, hippocampus, thalamus, and corpus callosum were unchanged. There were no significant treatment effects on tubulointerstitial kidney damage. CONCLUSION: The impact of NAC on cerebral cortical plaque load increase may result from the vascular pathology of SHRSP that accompanies BBB breakdown, leading to the failure of amyloid clearance mechanisms. It remains to be seen whether in humans chronic NAC intake may increase amyloid load in the aging human brain and dementia.


Assuntos
Acetilcisteína/uso terapêutico , Peptídeos beta-Amiloides/metabolismo , Córtex Cerebral/efeitos dos fármacos , Doenças de Pequenos Vasos Cerebrais/complicações , Sequestradores de Radicais Livres/uso terapêutico , Nefropatias , Análise de Variância , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/fisiopatologia , Córtex Cerebral/metabolismo , Doenças de Pequenos Vasos Cerebrais/etiologia , Modelos Animais de Doenças , Fibronectinas/metabolismo , Nefropatias/tratamento farmacológico , Nefropatias/etiologia , Nefropatias/patologia , Lectinas , Masculino , Placa Amiloide/prevenção & controle , Glicoproteínas da Membrana de Plaquetas/metabolismo , Ratos , Ratos Endogâmicos SHR
10.
J Alzheimers Dis ; 42 Suppl 3: S205-15, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24825568

RESUMO

BACKGROUND: Accumulation of amyloid-ß (Aß) and hyperphosphorylated tau (ptau) accompany cerebral small vessel disease (CSVD) in the aging brain and in Alzheimer's disease. CSVD is characterized by a heterogeneous spectrum of histopathological features possibly initiated by an endothelial dysfunction and blood-brain barrier (BBB) breakdown. OBJECTIVE: We test the hypothesis that characteristic features of CSVD are associated with the accumulation of Aß and ptau in non-transgenic spontaneously hypertensive stroke-prone rats (SHRSP). METHODS: Amyloid-ß protein precursor (AßPP) and tau were investigated by western blotting (n = 12 SHRSP, age 20 weeks). Lectin staining and plasma protein immunocytochemistry for BBB examination were performed in 38 SHRSP (age 12-44 weeks) and Aß (n = 29) and ptau (n = 17) immunocytochemistry in 20-44 week-old SHRSP. We assessed the correlation between extracellular amyloid deposits and features of CSVD (n = 135, 12-44 weeks). RESULTS: In 20 week-old SHRSP, cortical AßPP expression was significantly increased compared to Wistar controls but tau levels were unchanged. At ages of 20-44 weeks, SHRSP exhibited an age-dependent increase in extracellular Aß. Ptau was observed in 26-44 week-old SHRSP. Distinct features of CSVD pathology developed from the age of 12 weeks on. CONCLUSION: We demonstrate that in a hypertensive rat model that displays features of CSVD from 12 weeks, there is an age-dependent extracellular deposition of Aß observed from 20 weeks onwards, increased AßPP expression at 20 weeks and ptau accumulation from 26 weeks on. This study suggests that CSVD associated with hypertension results in an age-related failure of Aß clearance, increase in AßPP expression, and intraneuronal tau hyperphosphorylation.


Assuntos
Envelhecimento , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Doenças de Pequenos Vasos Cerebrais/complicações , Doenças de Pequenos Vasos Cerebrais/metabolismo , Proteínas tau/metabolismo , Animais , Plaquetas/patologia , Proteínas Sanguíneas/metabolismo , Barreira Hematoencefálica/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Doenças de Pequenos Vasos Cerebrais/patologia , Modelos Animais de Doenças , Dura-Máter/patologia , Lectinas/sangue , Estudos Longitudinais , Ratos , Ratos Endogâmicos SHR , Ratos Wistar
11.
Acta Neuropathol Commun ; 2: 43, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24725347

RESUMO

INTRODUCTION: The self-assembly of Aß peptides into a range of conformationally heterogeneous amyloid states represents a fundamental event in Alzheimer's disease. Within these structures oligomeric intermediates are considered to be particularly pathogenic. To test this hypothesis we have used a conformational targeting approach where particular conformational states, such as oligomers or fibrils, are recognized in vivo by state-specific antibody fragments. RESULTS: We show that oligomer targeting with the KW1 antibody fragment, but not fibril targeting with the B10 antibody fragment, affects toxicity in Aß-expressing Drosophila melanogaster. The effect of KW1 is observed to occur selectively with flies expressing Aß(1-40) and not with those expressing Aß(1-42) or the arctic variant of Aß(1-42) This finding is consistent with the binding preference of KW1 for Aß(1-40) oligomers that has been established in vitro. Strikingly, and in contrast to the previously demonstrated in vitro ability of this antibody fragment to block oligomeric toxicity in long-term potentiation measurements, KW1 promotes toxicity in the flies rather than preventing it. This result shows the crucial importance of the environment in determining the influence of antibody binding on the nature and consequences of the protein misfolding and aggregation. CONCLUSIONS: While our data support to the pathological relevance of oligomers, they highlight the issues to be addressed when developing inhibitory strategies that aim to neutralize these states by means of antagonistic binding agents.


Assuntos
Peptídeos beta-Amiloides/imunologia , Peptídeos beta-Amiloides/metabolismo , Anticorpos/uso terapêutico , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/metabolismo , Sequência de Aminoácidos , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/farmacologia , Animais , Animais Geneticamente Modificados , Anticorpos/química , Anticorpos/genética , Anticorpos/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Drosophila melanogaster , Olho/metabolismo , Olho/ultraestrutura , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Humanos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/genética , Camundongos , Camundongos Endogâmicos C57BL , Neuroblastoma/patologia , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/fisiopatologia , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/farmacologia , Agregação Patológica de Proteínas , Ligação Proteica/efeitos dos fármacos , Conformação Proteica
12.
J Cereb Blood Flow Metab ; 34(1): 144-52, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24129748

RESUMO

Neuronal damage shortly after onset or after brief episodes of cerebral ischemia has remained difficult to assess with clinical and preclinical imaging techniques as well as with microscopical methods. We here show, in rodent models of middle cerebral artery occlusion (MCAO), that neuronal damage in acute focal cerebral ischemia can be mapped with single-cell resolution using thallium autometallography (TlAMG), a histochemical technique for the detection of the K(+)-probe thallium (Tl(+)) in the brain. We intravenously injected rats and mice with thallium diethyldithiocarbamate (TlDDC), a lipophilic chelate complex that releases Tl(+) after crossing the blood-brain barrier. We found, within the territories of the affected arteries, areas of markedly reduced neuronal Tl(+) uptake in all animals at all time points studied ranging from 15 minutes to 24 hours after MCAO. In large lesions at early time points, areas with neuronal and astrocytic Tl(+) uptake below thresholds of detection were surrounded by putative penumbral zones with preserved but diminished Tl(+) uptake. At 24 hours, the areas of reduced Tl(+)uptake matched with areas delineated by established markers of neuronal damage. The results suggest the use of (201)TlDDC for preclinical and clinical single-photon emission computed tomography (SPECT) imaging of hyperacute alterations in brain K(+) metabolism and prediction of tissue viability in cerebral ischemia.


Assuntos
Encéfalo/patologia , Quelantes , Ditiocarb , Ataque Isquêmico Transitório/patologia , Neurônios/patologia , Tálio , Doença Aguda , Animais , Autorradiografia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Mapeamento Encefálico , Quelantes/administração & dosagem , Modelos Animais de Doenças , Ditiocarb/administração & dosagem , Histocitoquímica/métodos , Ataque Isquêmico Transitório/diagnóstico por imagem , Ataque Isquêmico Transitório/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/diagnóstico por imagem , Neurônios/metabolismo , Potássio/metabolismo , Ratos , Ratos Sprague-Dawley , Radioisótopos de Tálio/administração & dosagem , Tomografia Computadorizada de Emissão de Fóton Único/métodos
13.
Artigo em Inglês | MEDLINE | ID: mdl-23800299

RESUMO

BACKGROUND: Human cerebral small vessel disease (CSVD) has distinct histopathologic and imaging findings in its advanced stages. In spontaneously hypertensive stroke-prone rats (SHRSP), a well-established animal model of CSVD, we recently demonstrated that cerebral microangiopathy is initiated by early microvascular dysfunction leading to the breakdown of the blood-brain barrier and an activated coagulatory state resulting in capillary and arteriolar erythrocyte accumulations (stases). In the present study, we investigated whether initial microvascular dysfunction and other stages of the pathologic CSVD cascade can be detected by serial magnetic resonance imaging (MRI). FINDINGS: Fourteen SHRSP and three control (Wistar) rats (aged 26-44 weeks) were investigated biweekly by 3.0 Tesla (3 T) MRI. After perfusion, brains were stained with hematoxylin-eosin and histology was correlated with MRI data. Three SHRSP developed terminal CSVD stages including cortical, hippocampal, and striatal infarcts and macrohemorrhages, which could be detected consistently by MRI. Corresponding histology showed small vessel thromboses and increased numbers of small perivascular bleeds in the infarcted areas. However, 3 T MRI failed to visualize intravascular erythrocyte accumulations, even in those brain regions with the highest densities of affected vessels and the largest vessels affected by stases, as well as failing to detect small perivascular bleeds. CONCLUSION: Serial MRI at a field strength of 3 T failed to detect the initial microvascular dysfunction and subsequent small perivascular bleeds in SHRSP; only terminal stages of cerebral microangiopathy were reliably detected. Further investigations at higher magnetic field strengths (7 T) using blood- and flow-sensitive sequences are currently underway.

14.
Proc Natl Acad Sci U S A ; 110(2): 648-53, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23267072

RESUMO

The coagulation protease activated protein C (aPC) confers cytoprotective effects in various in vitro and in vivo disease models, including diabetic nephropathy. The nephroprotective effect may be related to antioxidant effects of aPC. However, the mechanism through which aPC may convey these antioxidant effects and the functional relevance of these properties remain unknown. Here, we show that endogenous and exogenous aPC prevents glomerular accumulation of oxidative stress markers and of the redox-regulating protein p66(Shc) in experimental diabetic nephropathy. These effects were predominately observed in podocytes. In vitro, aPC inhibited glucose-induced expression of p66(Shc) mRNA and protein in podocytes (via PAR-1 and PAR-3) and various endothelial cell lines, but not in glomerular endothelial cells. Treatment with aPC reversed glucose-induced hypomethylation and hyperacetylation of the p66(Shc) promoter in podocytes. The hyperacetylating agent sodium butyrate abolished the suppressive effect of aPC on p66(Shc) expression both in vitro and in vivo. Moreover, sodium butyrate abolished the beneficial effects of aPC in experimental diabetic nephropathy. Inhibition of p66(Shc) expression and mitochondrial translocation by aPC normalized mitochondrial ROS production and the mitochondrial membrane potential in glucose-treated podocytes. Genetic ablation of p66(Shc) compensated for the loss of protein C activation in vivo, normalizing markers of diabetic nephropathy and oxidative stress. These studies identify a unique mechanism underlying the cytoprotective effect of aPC. Activated PC epigenetically controls expression of the redox-regulating protein p66(Shc), thus linking the extracellular protease aPC to mitochondrial function in diabetic nephropathy.


Assuntos
Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/tratamento farmacológico , Repressão Epigenética/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Proteína C/farmacologia , Proteínas Adaptadoras da Sinalização Shc/antagonistas & inibidores , Análise de Variância , Animais , Butiratos/farmacologia , Imunoprecipitação da Cromatina , Metilação de DNA/efeitos dos fármacos , Primers do DNA/genética , Nefropatias Diabéticas/etiologia , Técnicas de Silenciamento de Genes , Immunoblotting , Imuno-Histoquímica , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/metabolismo , Podócitos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Estatísticas não Paramétricas , Frações Subcelulares
15.
Exp Transl Stroke Med ; 4: 14, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22883324

RESUMO

The 7th International Symposium on Neuroprotection and Neurorepair was held from May 2nd to May 5th, 2012 in Potsdam, Germany. The symposium, which directly continues the successful Magdeburg meeting series, attracted over 330 colleagues from 29 countries to discuss recent findings and advances in the field. The focus of the 2012 symposium was widened from stroke and traumatic brain injury to neurodegenerative diseases, notably dementia, and more generally the ageing brain. Thereby, emphasis was given on neurovascular aspects of neurodegeneration and stroke including the blood-brain barrier, recent findings regarding the pathomechanism of Alzheimer's disease, and brain imaging approaches. In addition, neurobiochemical aspects of neuroprotection, the role of astrogliosis, the clinical progress of cell-based approaches as well as translational hurdles and opportunities were discussed in-depth. This review summarizes some of the most stimulating discussions and reports from the meeting.

16.
J Neurol Sci ; 322(1-2): 71-6, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22831765

RESUMO

Cerebral small vessel disease (CSVD) is a chronically proceeding pathology of small brain vessels associated with white matter lesions, lacunar infarcts, brain atrophy and microbleeds. CSVD leads to slowly increasing cognitive and functional deficits but may also cause stroke-like symptoms, if vessels in critical brain areas are affected. Spontaneously hypertensive stroke-prone rats (SHRSP) exhibit several vascular risk factors, develop infarcts and hemorrhages and therefore represent a relevant model for the study of CSVD. Using this animal model, we recently demonstrated that intravasal accumulations of erythrocytes, we interpreted as stases, stand at the beginning of a pathological vascular cascade. After stases microbleeds occur, which are followed by reactive microthromboses. Bleeds and thromboses finally cause hemorrhagic infarcts. Immunohistochemical stainings show, that plasma proteins like IgG are deposited in the walls of vessels affected by stases. Further, we found small clots and thread-shaped aggregations of thrombocytes as well as thread-shaped structures of von Willebrand-Factor within stases. Thus, we conclude that blood-brain barrier damages occur in the neighborhood of stases and stases seem to be associated with a restricted activation of blood coagulation without formation of obstructive thromboses. Finally, we demonstrate that small vessel damage rarely appears in the cerebellum. Even animals with multiple cerebral infarcts may be free of any cerebellar vascular pathology.


Assuntos
Coagulação Sanguínea/fisiologia , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/fisiopatologia , Doenças de Pequenos Vasos Cerebrais/complicações , Hemostasia/fisiologia , Fatores Etários , Animais , Proteínas Sanguíneas/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Progressão da Doença , Eritrócitos/patologia , Leucoencefalopatias/etiologia , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Acidente Vascular Cerebral Lacunar/etiologia , Acidente Vascular Cerebral Lacunar/patologia , Fator de von Willebrand/metabolismo
17.
Proc Natl Acad Sci U S A ; 109(31): 12503-8, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22814377

RESUMO

Oligomers are intermediates of the ß-amyloid (Aß) peptide fibrillogenic pathway and are putative pathogenic culprits in Alzheimer's disease (AD). Here we report the biotechnological generation and biochemical characterization of an oligomer-specific antibody fragment, KW1. KW1 not only discriminates between oligomers and other Aß conformations, such as fibrils or disaggregated peptide; it also differentiates between different types of Aß oligomers, such as those formed by Aß (1-40) and Aß (1-42) peptide. This high selectivity of binding contrasts sharply with many other conformational antibodies that interact with a large number of structurally analogous but sequentially different antigens. X-ray crystallography, NMR spectroscopy, and peptide array measurements imply that KW1 recognizes oligomers through a hydrophobic and significantly aromatic surface motif that includes Aß residues 18-20. KW1-positive oligomers occur in human AD brain samples and induce synaptic dysfunctions in living brain tissues. Bivalent KW1 potently neutralizes this effect and interferes with Aß assembly. By altering a specific step of the fibrillogenic cascade, it prevents the formation of mature Aß fibrils and induces the accumulation of nonfibrillar aggregates. Our data illuminate significant mechanistic differences in oligomeric and fibril recognition and suggest the considerable potential of KW1 in future studies to detect or inhibit specific types of Aß conformers.


Assuntos
Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química , Multimerização Proteica , Motivos de Aminoácidos , Anticorpos Monoclonais , Cristalografia por Raios X , Humanos , Ressonância Magnética Nuclear Biomolecular , Estrutura Quaternária de Proteína
19.
J Neurosci Res ; 90(1): 193-202, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21971686

RESUMO

Reactive oxygen species (ROS) are key players in ischemia-induced neurodegeneration. We investigated whether hippocampal neurons may lack sufficient redox-buffering capacity to protect against ROS attacks. Using organotypic hippocampal slice cultures (OHSCs) transiently exposed to oxygen and glucose deprivation (OGD) and gerbils suffering from a two-vessel occlusion (2VO) as complementary ex vivo and in vivo models, we have elucidated whether the intrinsic redox systems interfere with ischemia-induced neurodegeneration. Cell- type-specific immunohistological staining of hippocampal slice cultures revealed that pyramidal neurons, in contrast to astrocytes and microglia, express free thiols only weakly. In addition, free thiol levels were extensively decreased throughout the hippocampal formation immediately after OGD, but recovered within 24 hr after reperfusion. In parallel, progressive glia activation and proliferation were observed. Increased neuronal exposure to ROS was monitored by dihydroethidium oxidation in hippocampal pyramidal cell layers immediately after OGD. Coadministration of reduction equivalents (α-lipoic acid) and thiol-stimulating agents (enalapril, ambroxol) decreased ischemia-induced neuronal damage in OGD-treated OHSCs and in gerbils exposed to 2VO, whereas single drug applications remained ineffective. In summary, limited redox buffering capacities of pyramidal neurons may underlie their exceptional vulnerability to cerebral ischemia. Consistently, multidrug treatments supporting endogenous redox systems may offer a strategy to promote valid neuroprotection.


Assuntos
Isquemia Encefálica/patologia , Neurônios/patologia , Oxirredução , Traumatismo por Reperfusão/patologia , Animais , Morte Celular , Modelos Animais de Doenças , Etídio/análogos & derivados , Etídio/metabolismo , Fluoresceínas/metabolismo , Gerbillinae , Proteína Glial Fibrilar Ácida/metabolismo , Glucose/deficiência , Glicoproteínas/metabolismo , Hipocampo/citologia , Hipóxia , Lectinas/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio , Rodaminas/metabolismo , Compostos de Sulfidrila/metabolismo , Ácido Tióctico/farmacologia , Versicanas
20.
Cell Transplant ; 21(4): 723-37, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21929866

RESUMO

Experimental transplantation of human umbilical cord blood (hUCB) mononuclear cells (MNCs) in rodent stroke models revealed the therapeutic potential of these cells. However, effective cells within the heterogeneous MNC population and their modes of action are still under discussion. MNCs and MNC fractions enriched (CD34(+)) or depleted (CD34(-)) for CD34-expressing stem/progenitor cells were isolated from hUCB. Cells were transplanted intravenously following middle cerebral artery occlusion in spontaneously hypertensive rats and directly or indirectly cocultivated with hippocampal slices previously subjected to oxygen and glucose deprivation. Application of saline solution or a human T-cell line served as controls. In vivo, MNCs, CD34(+) and CD34(-) cells reduced neurofunctional deficits and diminished lesion volume as determined by magnetic resonance imaging. MNCs were superior to other fractions. However, human cells could not be identified in brain tissue 29 days after stroke induction. Following direct application on postischemic hippocampal slices, MNCs reduced neural damage throughout a 3-day observation period. CD34(+) cells provided transient protection for 2 days. The CD34(-) fraction, in contrast to in vivo results, failed to reduce neural damage. Direct cocultivation of MNCs was superior to indirect cocultivation of equal cell numbers. Indirect application of up to 10-fold MNC concentrations enhanced neuroprotection to a level comparable to direct cocultivation. After direct application, MNCs migrated into the slices. Flow cytometric analysis of migrated cells revealed that the CD34(+) cells within MNCs were preferably attracted by damaged hippocampal tissue. Our study suggests that MNCs provide the most prominent neuroprotective effect, with CD34(+) cells seeming to be particularly involved in the protective action of MNCs. CD34(+) cells preferentially home to neural tissue in vitro, but are not superior concerning the overall effect, implying that there is another, still undiscovered, protective cell population. Furthermore, MNCs did not survive in the ischemic brain for longer periods without immunosuppression.


Assuntos
Sangue Fetal/citologia , Acidente Vascular Cerebral/terapia , Animais , Antígenos CD34/metabolismo , Células Cultivadas , Humanos , Técnicas In Vitro , Imageamento por Ressonância Magnética , Masculino , Fatores de Crescimento Neural , Ratos , Ratos Endogâmicos SHR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...