Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arthritis Rheumatol ; 76(1): 18-31, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527031

RESUMO

OBJECTIVE: We previously reported an increased expression of microRNA-155 (miR-155) in the blood monocytes of patients with rheumatoid arthritis (RA) that could be responsible for impaired monocyte polarization to anti-inflammatory M2-like macrophages. In this study, we employed two preclinical models of RA, collagen-induced arthritis and K/BxN serum transfer arthritis, to examine the therapeutic potential of antagomiR-155-5p entrapped within PEGylated (polyethylene glycol [PEG]) liposomes in resolution of arthritis and repolarization of monocytes towards the anti-inflammatory M2 phenotype. METHODS: AntagomiR-155-5p or antagomiR-control were encapsulated in PEG liposomes of 100 nm in size and -10 mV in zeta potential with high antagomiR loading efficiency (above 80%). Mice were injected intravenously with 1.5 nmol/100 µL PEG liposomes containing antagomiR-155-5p or control after the induction of arthritis. RESULTS: We demonstrated the biodistribution of fluorescently tagged PEG liposomes to inflamed joints one hour after the injection of fluorescently tagged PEG liposomes, as well as the liver's subsequent accumulation after 48 hours, indicative of hepatic clearance, in mice with arthritis. The injection of PEG liposomes containing antagomiR-155-5p decreased arthritis score and paw swelling compared with PEG liposomes containing antagomiR-control or the systemic delivery of free antagomiR-155-5p. Moreover, treatment with PEG liposomes containing antagomiR-155-5p led to the restoration of bone marrow monocyte defects in anti-inflammatory macrophage differentiation without any significant functional change in other immune cells, including splenic B and T cells. CONCLUSION: The injection of antagomiR-155-5p encapsulated in PEG liposomes allows the delivery of small RNA to monocytes and macrophages and reduces joint inflammation in murine models of RA, providing a promising strategy in human disease.


Assuntos
Artrite Experimental , Artrite Reumatoide , MicroRNAs , Humanos , Camundongos , Animais , Antagomirs/metabolismo , Antagomirs/uso terapêutico , Lipossomos/metabolismo , Lipossomos/uso terapêutico , Distribuição Tecidual , Macrófagos , Anti-Inflamatórios/uso terapêutico , MicroRNAs/metabolismo
2.
J Control Release ; 360: 293-303, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37391032

RESUMO

In an attempt to tune drug release and subsequent pharmacokinetics once administered intravenously, we have synthesized three lipid-drug conjugates (LDCs) of dexamethasone (DXM) each possessing a different lipid-drug chemical linkage: namely ester, carbamate and carbonate. These LDCs were thoroughly characterized before being turned into nanoscale particles by an emulsion-evaporation process using DSPE-PEG2000 (Distearoyl-sn-Glycero-3-Phosphoethanolamine-N-(methoxy(polyethylene glycol)-2000) as the only excipient. Spherical nanoparticles (NPs) of about 140-170 nm, with a negative zeta potential, were obtained for each LDC and exhibited good stability upon storage at 4 °C for 45 days with no recrystallization of LDCs observed. LDC encapsulation efficacy was above 95% for the three LDCs, leading to a LDC loading of about 90% and an equivalent DXM loading above 50%. Although the ester and carbonate NPs did not exhibit any toxicity up to an equivalent DXM concentration of 100 µg/mL, the carbamate LDC NPs appeared very toxic towards RAW 264.7 macrophages and were discarded. Both ester and carbonate LDC NPs were shown to exert anti-inflammatory activity on LPS-activated macrophages. DXM release from LDC NPs in murine plasma was faster from ester than from carbonate NPs. Finally, pharmacokinetics and biodistribution were conducted, showing a lower exposure to DXM from carbonate LDC NPs than from ester LDC NPs, correlated with the slower DXM release from carbonate LDC NPs. These results outline the need for extended studies to find the best prodrug system for extended drug release.


Assuntos
Nanopartículas , Pró-Fármacos , Camundongos , Animais , Distribuição Tecidual , Anti-Inflamatórios , Nanopartículas/química , Dexametasona
3.
Eur J Pharm Biopharm ; 170: 112-120, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34890789

RESUMO

In a strategy to improve macrophage targeting of glucocorticoids (GCs) for anti-inflammatory therapy, a so-called nanoprodrug of budesonide palmitate decorated by mannose moieties was designed. The synthesis of budesonide palmitate (BP) was obtained by esterification and mannosylated lipid (DSPE-PEG-Man) by reacting 1,2-Distearoyl-sn-Glycero-3-Phosphoethanolamine (DSPE)-polyethylene glycol-amine and α-D-mannopyranosylphenyl isothiocyanate (MPITC). Nanoparticles were formulated by emulsion-evaporation and different ratios of mannosylated lipid were introduced in the formulation of BP nanoprodrugs. Using up to 75% of DSPE-PEG-man (75/25) led to 200 nm particles with a polydispersity index below 0.2, a negative zeta potential ranging from -10 to -30 mV, and one-month stability at 4 °C. The encapsulation efficiency of BP approached 100% proving that the prodrug was associated with the particles, leading to a final BP loading of 50-to 60% (w/w). The lectin agglutination test confirmed the availability of mannose on the nanoprodrug surface. Nanoprodrug uptake by RAW 264.7 macrophages was observed by confocal microscopy and flow cytometry. After 24 and 48 h of incubation, a significantly greater internalization of mannosylated nanoparticles as compared to PEGylated nanoparticles was achieved. The mannose receptor-mediated uptake was confirmed by a mannan inhibition study. After LPS-induced inflammation, the anti-inflammatory effect of mannosylated nanoparticles was assessed. After 48 h of incubation, cytokines (MCP-1 and TNFα) were reduced demonstrating that the functionalization of nanoprodrugs is possible and efficient.


Assuntos
Budesonida/farmacologia , Manose/farmacologia , Pró-Fármacos/síntese química , Animais , Disponibilidade Biológica , Budesonida/administração & dosagem , Sobrevivência Celular , Células Cultivadas , Citocinas/metabolismo , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Macrófagos/efeitos dos fármacos , Manose/administração & dosagem , Camundongos , Nanopartículas , Distribuição Tecidual
4.
Int J Pharm ; 600: 120509, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33766637

RESUMO

Tiny nanoparticles of dexamethasone palmitate (DXP) were designed as transparent suspensions for intravitreal administration to treat age-related macular degeneration (AMD). The influence of three surfactants (PEG-40-stearate and Pluronic block copolymers F68 and F127) on nanoparticles size and stability was investigated and led to an optimal formulation based on Pluronic F127 stabilizing DXP nanoparticles. Size measurements and TEM revealed tiny nanoparticles (around 35 nm) with a low opacity, compatible with further intravitreal injection. X-Ray powder diffraction (XRPD) and transmission electronic microscopy (TEM) performed on freeze-dried samples showed that DXP nanoparticles were rather monodisperse and amorphous. The efficacy of DXP nanoparticles was assessed in vivo on pigmented rabbits with unilateral intravitreal injections. After breakdown of the blood-retinal barrier (BRB) induced by injection of rhVEGF165 with carrier protein, DXP nanoparticles induced a restoration of the BRB 1 month after their intravitreal injection. However, their efficacy was limited in time most probably by clearance of DXP nanoparticles after 2 months due to their small size.


Assuntos
Dexametasona , Nanopartículas , Animais , Glucocorticoides , Injeções Intravítreas , Palmitatos , Coelhos
5.
Int J Pharm ; 598: 120381, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33610735

RESUMO

We propose to combine two therapeutic anti-inflammatory approaches with different mechanisms of action in a single drug delivery system consisting of cationic dexamethasone palmitate nanoparticles (CDXP-NP) associated with TNF-α siRNA. The CDXP-NPs are obtained by the solvent emulsion evaporation technique using dexamethasone palmitate, a prodrug of dexamethasone, associated with a cationic lipid, DOTAP. Their physicochemical properties as well as their ability to bind siRNA were evaluated through gel electrophoresis and siRNA binding quantification. SiRNA cellular uptake was assessed by flow cytometry and confocal microscopy on RAW264.7 macrophages. TNF-α inhibition was determined on LPS-activated RAW264.7 macrophages. Stable and monodisperse nanoparticles around 100 nm with a positive zeta potential (+59 mV) were obtained with an encapsulation efficiency of the prodrug of 95%. A nitrogen/phosphate (N/P) ratio of 10 was selected that conferred the total binding of siRNA to the nanoparticles. Using these CDXP-siRNA-NPs, the siRNA was strongly internalized by RAW264.7 macrophage cells and localized within the cytoplasm. On the LPS-induced RAW264.7 macrophages, a larger inhibition of TNF-α was observed with CDXP-siRNA-NPs compared to CDXP-NPs alone. In conclusion, from these data, it is clear that a combination of DXP and TNF-α siRNA therapy could be a novel strategy and optimized alternative approach to cure inflammatory diseases.


Assuntos
Nanopartículas , Fator de Necrose Tumoral alfa , Anti-Inflamatórios/farmacologia , Dexametasona/farmacologia , RNA Interferente Pequeno , Fator de Necrose Tumoral alfa/genética
6.
Int J Biol Macromol ; 164: 2558-2568, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32805287

RESUMO

Transdermal patches for analgesic purposes are widely used, however, their occlusive characteristics can often cause allergic reactions, irritating contact dermatitis, and allergic contact dermatitis upon extended use. Chitosan is a natural positively charged bioadhesive polysaccharide with several biological properties, being promising templates for sustained and controlled topical or transdermal drug delivery. Methyl salicylate (MS) is a non-steroidal topical anti-inflammatory drug (NSAID). MS is a lipophilic oily drug commonly found in transdermal patches, being difficult to incorporate into hydrophilic formulations such as Chitosan-based films. Thus, MS is a good candidate to be encapsulated into nanoemulsions (NE). This work reports the formulation development, physical-chemical characterization, and in vitro drug release of NE-loaded Chitosan films formulated with MS, as a novel substitute for transdermal analgesic patches. MS was encapsulated into NE, which were prepared by ultrasonication and presented 29.3 nm ± 0.1 and PdI 0.167 ± 0.005. The incorporation of MS into NE prevented phase separation and provided a homogeneous physical blending formulation, as confirmed by FTIR, TGA. NE-loaded films provided high drug incorporation in the films 94.08% ± 6.63%), and a smaller crystallinity degree in comparison with physical mixture films, suggesting a plasticizing effect of nano-sized droplets. Besides, mean weight, thickness, and moisture content were increased in NE-loaded films in comparison with chitosan-based control films. In vitro drug release from NE-loaded films was significantly higher than for physical mixture films, following Weibull and Korsmeyer-Peppas release kinetics models. The results suggest that NE-loaded chitosan film can increase the drug loading capacity of oil drugs and successfully control in vitro release, constituting a novel approach for transdermal drug delivery of NSAIDs.


Assuntos
Quitosana/química , Membranas Artificiais , Salicilatos , Adesivo Transdérmico , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Emulsões , Humanos , Salicilatos/química , Salicilatos/farmacocinética
7.
Sci Adv ; 6(23): eaaz5466, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32548259

RESUMO

Uncontrolled inflammatory processes are at the root of numerous pathologies. Most recently, studies on confirmed COVID-19 cases have suggested that mortality might be due to virally induced hyperinflammation. Uncontrolled pro-inflammatory states are often driven by continuous positive feedback loops between pro-inflammatory signaling and oxidative stress, which cannot be resolved in a targeted manner. Here, we report on the development of multidrug nanoparticles for the mitigation of uncontrolled inflammation. The nanoparticles are made by conjugating squalene, a natural lipid, to adenosine, an endogenous immunomodulator, and then encapsulating α-tocopherol, as antioxidant. This resulted in high drug loading, biocompatible, multidrug nanoparticles. By exploiting the endothelial dysfunction at sites of acute inflammation, these multidrug nanoparticles delivered the therapeutic agents in a targeted manner, conferring survival advantage to treated animals in models of endotoxemia. Selectively delivering adenosine and antioxidants together could serve as a novel therapeutic approach for safe treatment of acute paradoxal inflammation.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Endotoxemia/tratamento farmacológico , Nanopartículas/química , Esqualeno/química , Síndrome de Resposta Inflamatória Sistêmica/tratamento farmacológico , Adenosina/administração & dosagem , Adenosina/química , Animais , Antioxidantes/administração & dosagem , Antioxidantes/química , Betacoronavirus , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Endotoxemia/induzido quimicamente , Feminino , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/química , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/patologia , Pneumonia Viral/virologia , SARS-CoV-2 , Esqualeno/administração & dosagem , Síndrome de Resposta Inflamatória Sistêmica/induzido quimicamente , Resultado do Tratamento , alfa-Tocoferol/administração & dosagem , alfa-Tocoferol/química
8.
Parasitology ; 147(9): 1032-1037, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32364107

RESUMO

Cutaneous leishmaniasis (CL) is a major health problem in many countries and its current treatment involves multiple parenteral injections with toxic drugs and requires intensive health services. Previously, the efficacy of a single subcutaneous injection with a slow-release formulation consisting of poly(lactide-co-glycolide) (PLGA) microparticles loaded with an antileishmanial 3-nitro-2-hydroxy-4,6-dimethoxychalcone (CH8) was demonstrated in mice model. In the search for more easily synthesized active chalcone derivatives, and improved microparticle loading, CH8 analogues were synthesized and tested for antileishmanial activity in vitro and in vivo. The 3-nitro-2',4',6'-trimethoxychalcone (NAT22) analogue was chosen for its higher selectivity against intracellular amastigotes (selectivity index = 1489, as compared with 317 for CH8) and more efficient synthesis (89% yield, as compared with 18% for CH8). NAT22 was loaded into PLGA / polyvinylpyrrolidone (PVP) polymeric blend microspheres (NAT22-PLGAk) with average diameter of 1.9 µm. Although NAT22-PLGAk showed similar activity to free NAT22 in killing intracellular parasites in vitro (IC50 ~ 0.2 µm), in vivo studies in Leishmania amazonensis - infected mice demonstrated the significant superior efficacy of NAT22-PLGAk to reduce the parasite load. A single intralesional injection with NAT22-PLGAk was more effective than eight injections with free NAT22. Together, these results show that NAT22-PLGAk is a promising alternative for single-dose localized treatment of CL.


Assuntos
Antiprotozoários/uso terapêutico , Chalconas/uso terapêutico , Leishmania mexicana/efeitos dos fármacos , Leishmaniose Cutânea/prevenção & controle , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C
9.
Artigo em Inglês | MEDLINE | ID: mdl-32202079

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune disease that affects 0.5-1% of the world population. Current treatments include on one hand non-steroidal anti-inflammatory drugs and glucocorticoids (GCs) for treating pain and on the other hand disease-modifying anti-rheumatic drugs such as methotrexate, Janus kinase inhibitors or biologics such as antibodies targeting mainly cytokine expression. More recently, nucleic acids such as siRNA, miRNA, or anti-miRNA have shown strong potentialities for the treatment of RA. This review discusses the way nanomedicines can target GCs and nucleic acids to inflammatory sites, increase drug penetration within inflammatory cells, achieve better subcellular distribution and finally protect drugs against degradation. For GCs such a targeting effect would allow the treatment to be more effective at lower doses and to reduce the administration frequency as well as to induce much fewer side-effects. In the case of nucleic acids, particularly siRNA, knocking down proteins involved in RA, could importantly be facilitated using nanomedicines. Finally, the combination of both siRNA and GCs in the same carrier allowed for the same cell to target both the GCs receptor as well as any other signaling pathway involved in RA. Nanomedicines appear to be very promising for the delivery of conventional and novel drugs in RA therapeutics. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.


Assuntos
Antirreumáticos , Artrite Reumatoide/tratamento farmacológico , Glucocorticoides , Nanomedicina , Ácidos Nucleicos , Animais , Antirreumáticos/farmacocinética , Antirreumáticos/uso terapêutico , Glucocorticoides/farmacocinética , Glucocorticoides/uso terapêutico , Humanos , Camundongos , Ácidos Nucleicos/farmacocinética , Ácidos Nucleicos/uso terapêutico , RNA Interferente Pequeno , Ratos
10.
J Chem Inf Model ; 60(2): 569-577, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31999453

RESUMO

The lipophilicity of cholesterol was investigated by using coarse-grained molecular dynamics and umbrella sampling. The previous coarse-grained cholesterol models in the literature are more hydrophobic than our model. The Gibbs free energy of transferring cholesterol from the octanol phase to water phase (ΔGo/w) was 11.88 ± 0.08 kcal mol-1, and the octanol-water partitioning coefficient (logP) was estimated to be 8.72 ± 0.06. The latter is in agreement with the logP values found by bioinformatics, which are standard methods to predict the lipophilicity, giving excellent octanol/water partitioning coefficients compared with experimental ones for different molecules. We also performed the first experimentally direct measurement of this important property for cholesterol. The experimental octanol/water partitioning coefficient of cholesterol was measured to be 8.86 ± 0.79, which is in excellent agreement with our calculated logP value from our parametrized coarse-grained cholesterol model. This shows the significance of systematic optimization of the lipophilicity for developing coarse-grain models of important biomolecules with complicated molecular structures and hydrophobic character like cholesterol.


Assuntos
Colesterol/química , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformação Molecular , Octanóis/química , Termodinâmica , Água/química
11.
Mol Pharm ; 16(7): 2999-3010, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31117740

RESUMO

The encapsulation of glucocorticoids, such as dexamethasone, in nanoparticles (NPs) faces two main issues: a low drug loading and the destabilization of the nanoparticle suspension due to drug crystallization. Here, we successfully formulated a prodrug of dexamethasone, dexamethasone palmitate (DXP), into nanoparticles stabilized by the sole presence of distearoyl- sn-glycero-3-phosphoethanolamine- N-[methoxy(poly(ethylene glycol))-2000] (DSPE-PEG2000). Two formulation processes, nanoprecipitation and emulsion-evaporation, allowed the formation of stable nanoparticles. By adjusting the drug/lipid ratio and the DXP concentration, nanoparticles of DXP (DXP-NPs) with a size between 130 and 300 nm can be obtained. Owing to the presence of DSPE-PEG2000, a high drug entrapment efficiency of 98% w/w was reached for both processes, corresponding to a very high equivalent dexamethasone drug loading of around 50% w/w in the absence of crystallization upon storage at 4 °C. The anti-inflammatory activity of DXP-NPs was preserved when incubated with macrophages activated with lipopolysaccharide. Pharmacokinetics parameters were evaluated after intravenous (IV) injection of DXP-NPs to healthy mice. The release of DXM from DXP-NPs in plasma was clearly controlled up to 18 h compared with the free drug, which was rapidly eliminated from plasma after administration. In conclusion, a novel type of nanoparticle combining the advantages of prodrugs and nanoparticles was designed, easy to produce with a high loading efficiency and leading to modified pharmacokinetics and tissue distribution after IV administration.


Assuntos
Anti-Inflamatórios/farmacocinética , Dexametasona/farmacocinética , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Pró-Fármacos/farmacocinética , Animais , Anti-Inflamatórios/química , Sobrevivência Celular/efeitos dos fármacos , Cristalização , Dexametasona/administração & dosagem , Dexametasona/química , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Injeções Intravenosas , Masculino , Camundongos , Camundongos Endogâmicos DBA , Nanopartículas/administração & dosagem , Tamanho da Partícula , Fosfatidiletanolaminas/administração & dosagem , Fosfatidiletanolaminas/química , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Pró-Fármacos/administração & dosagem , Pró-Fármacos/química , Células RAW 264.7 , Distribuição Tecidual
12.
Mater Sci Eng C Mater Biol Appl ; 97: 602-612, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30678947

RESUMO

Biocompatible scaffolds have been used to promote cellular growth and proliferation in order to develop grafts, prostheses, artificial skins and cartilage. Electrospinning is widely studied as a method capable of producing nanofibers which enables cell attachment and proliferation, generating a functional scaffold that is suitable for many types of organs or tissues. In this study, electrospinning was used to obtain core-shell and monolithic fibers from the biocompatible poly (lactic acid) and poly (vinyl alcohol) polymers. The main purpose of this work is to produce core-shell nanofiber based scaffolds that works as a sustained delivery vehicle for BMP-2 protein, allowing those fibers to be used in the recovery of alveolar bone tissue without further bone surgery. Then, polymer nanofibers were manufactured by optimizing process parameters of coaxial electrospinning with emphasis on the most relevant ones: voltage, internal and external flows in an attempt to correlate fibers properties with protein releasing abilities. All nanofibers were characterized according to its morphology, thermal behaviour, crystallinity and release profile. For the release tests, bovine albumin was added into internal fiber for future periodontal restorage application. Obtained results demonstrate that fibers were formed with diameters up to 250 nm. According to electronic microscopy images, one could observe surface of nanofibers, thickness and core-shell morphology confirmed. X-ray diffraction analysis and contact angle tests showed fibers with low crystal degree and low hydrophobicity. Nanofibers structure affected in vitro release model tests and consequently the cellular assays.


Assuntos
Materiais Biocompatíveis/química , Proteína Morfogenética Óssea 2/química , Nanofibras/química , Poliésteres/química , Álcool de Polivinil/química , Regeneração , Fator de Crescimento Transformador beta/química , Animais , Materiais Biocompatíveis/farmacologia , Proteína Morfogenética Óssea 2/farmacologia , Osso e Ossos/fisiologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Humanos , Camundongos , Nanofibras/toxicidade , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Regeneração/efeitos dos fármacos , Engenharia Tecidual , Fator de Crescimento Transformador beta/farmacologia
13.
Langmuir ; 32(21): 5350-5, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27192611

RESUMO

Block copolymers with a low hydrophilic-to-lipophilic balance form membranes that are highly permeable to hydrophilic molecules. Polymersomes with this type of membrane enable the controllable release of molecules without membrane rupture. However, these polymersomes are difficult to assemble because of their low hydrophobicity. Here, we report a microfluidic approach to the production of these polymersomes using double-emulsion drops with ultrathin shells as templates. The small thickness of the middle oil phase enables the attraction of the hydrophobic blocks of the polymers adsorbed at each of the oil/water interfaces of the double emulsions; this results in the dewetting of the oil from the surface of the innermost water drops of the double emulsions and the ultimate formation of the polymersome. This approach to polymersome fabrication enables control of the vesicle size and results in the efficient encapsulation of hydrophilic ingredients that can be released through the polymer membrane without membrane rupture. We apply our approach to the fabrication of Pluronic L121 vesicles and characterize the permeability of their membranes. Furthermore, we show that membrane permeability can be tuned by blending different Pluronic polymers. Our work thus describes a route to producing Pluronic vesicles that are useful for the controlled release of hydrophilic ingredients.

14.
Auton Neurosci ; 193: 152-5, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26329874

RESUMO

PURPOSE: To report the effect of the transcranial direct current stimulation (tDCS) applied over the primary motor cortex (M1) of an individual, a sedentary male subject with complete chronic spinal cord injury at the T11-T12 levels. METHODS: The individual underwent three experimental sessions: control, sham and anodal tDCS. Before, during and after exercise sessions, the following variables were recorded: heart rate variability, Rating of Perceived Exertion (RPE), power and glucose (this one only before and after the exercise). RESULTS: The anodal tDCS provided greater exercise time and power, lower perceived exertion, greater reduction in glucose, and an increase in time to reach the threshold of heart rate variability. CONCLUSIONS: tDCS caused an improvement in the exercise tolerance, probably due to the modulation of the autonomic nervous system and the pain, characterized by reduced RPE.


Assuntos
Exercício Físico/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia , Estimulação Transcraniana por Corrente Contínua , Adulto , Sistema Nervoso Autônomo/fisiopatologia , Glicemia/fisiologia , Doença Crônica , Exercício Físico/psicologia , Teste de Esforço , Frequência Cardíaca/fisiologia , Humanos , Masculino , Comportamento Sedentário , Traumatismos da Medula Espinal/psicologia , Vértebras Torácicas , Estimulação Transcraniana por Corrente Contínua/métodos
15.
J Control Release ; 194: 211-9, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25192940

RESUMO

Chitosan (CS) nanoparticles are typically obtained by complexation with tripolyphosphate (TPP) ions, or more recently using triphosphate group-containing drugs such as adenosine triphosphate (ATP). ATP is an active molecule we aim to deliver in order to restore its depletion in macrophages, when associated with their death leading to plaque rupture in atherosclerotic lesions. Despite high interest in CS nanoparticles for drug delivery, due to the biodegradability of CS and to the ease of the preparation process, these systems tend to readily disintegrate when diluted in physiological media. Some stabilization strategies have been proposed so far but they typically involve the addition of a coating agent or chemical cross-linkers. In this study, we propose the complexation of CS with iron ions prior to nanoparticle formation as a strategy to improve the carrier stability. This can be achieved thanks to the ability of iron to strongly bind both chitosan and phosphate groups. Nanoparticles were obtained from either TPP or ATP and chitosan-iron (CS-Fe) complexes containing 3 to 12% w/w iron. Isothermal titration calorimetry showed that the binding affinity of TPP and ATP to CS-Fe increased with the iron content of CS-Fe complexes. The stability of these nanoparticles in physiological conditions was evaluated by turbidity and by fluorescence fluctuation in real time upon dilution by electrolytes, and revealed an important stabilization effect of CS-Fe compared to CS, increasing with the iron content. Furthermore, in vitro studies on two macrophage cell lines (J774A.1 and THP-1) revealed that ATP uptake is improved consistently with the iron content of CS-Fe/ATP nanoparticles, and correlated to their lower dissociation in biological medium, allowing interesting perspectives for the intracellular delivery of ATP.


Assuntos
Quitosana/química , Ferro/química , Polifosfatos/química , Trifosfato de Adenosina/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Células , Quitosana/metabolismo , Quitosana/toxicidade , Coloides , Sistemas de Liberação de Medicamentos , Géis , Ferro/metabolismo , Ferro/toxicidade , Macrófagos/efeitos dos fármacos , Camundongos , Nanopartículas , Estresse Oxidativo , Tamanho da Partícula , Polifosfatos/metabolismo , Polifosfatos/toxicidade
16.
Curr Radiopharm ; 5(4): 336-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22724424

RESUMO

Nanotechnology has been the last frontier in the diagnoses and treatment of many diseases, especially in oncology. The use of nanoparticles of radiopharmaceuticals may represent the future of Nuclear Medicine. In this study we developed, characterized and tested polymeric nanoparticles of FMISO (fluoromisonidazole) in a dynamic study of biodistribution. The results of the development as characterization showed that nanoparticles were well obtained with a size range of 300- 500 nm and a spherical shape.


Assuntos
Misonidazol/análogos & derivados , Nanopartículas/química , Radiossensibilizantes/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Microscopia de Força Atômica , Misonidazol/síntese química , Misonidazol/farmacocinética , Radiossensibilizantes/síntese química , Compostos Radiofarmacêuticos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...