Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 18(1): 134, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409414

RESUMO

BACKGROUND: The halophilic bacterium Chromohalobacter salexigens metabolizes glucose exclusively through the Entner-Doudoroff (ED) pathway, an adaptation which results in inefficient growth, with significant carbon overflow, especially at low salinity. Preliminary analysis of C. salexigens genome suggests that fructose metabolism could proceed through the Entner-Doudoroff and Embden-Meyerhof-Parnas (EMP) pathways. In order to thrive at high salinity, this bacterium relies on the biosynthesis and accumulation of ectoines as major compatible solutes. This metabolic pathway imposes a high metabolic burden due to the consumption of a relevant proportion of cellular resources, including both energy molecules (NADPH and ATP) and carbon building blocks. Therefore, the existence of more than one glycolytic pathway with different stoichiometries may be an advantage for C. salexigens. The aim of this work is to experimentally characterize the metabolism of fructose in C. salexigens. RESULTS: Fructose metabolism was analyzed using in silico genome analysis, RT-PCR, isotopic labeling, and genetic approaches. During growth on fructose as the sole carbon source, carbon overflow was not observed in a wide range of salt concentrations, and higher biomass yields were reached. We unveiled the initial steps of the two pathways for fructose incorporation and their links to central metabolism. While glucose is metabolized exclusively through the Entner-Doudoroff (ED) pathway, fructose is also partially metabolized by the Embden-Meyerhof-Parnas (EMP) route. Tracking isotopic label from [1-13C] fructose to ectoines revealed that 81% and 19% of the fructose were metabolized through ED and EMP-like routes, respectively. Activities of enzymes from both routes were demonstrated in vitro by 31P-NMR. Genes encoding predicted fructokinase and 1-phosphofructokinase were cloned and the activities of their protein products were confirmed. Importantly, the protein encoded by csal1534 gene functions as fructose bisphosphatase, although it had been annotated previously as pyrophosphate-dependent phosphofructokinase. The gluconeogenic rather than glycolytic role of this enzyme in vivo is in agreement with the lack of 6-phosphofructokinase activity previously described. CONCLUSIONS: Overall, this study shows that C. salexigens possesses a greater metabolic flexibility for fructose catabolism, the ED and EMP pathways contributing to a fine balancing of energy and biosynthetic demands and, subsequently, to a more efficient metabolism.


Assuntos
Chromohalobacter/genética , Chromohalobacter/metabolismo , Frutose/metabolismo , Glicólise , Metabolismo dos Carboidratos/genética , Carbono/metabolismo , Genoma Bacteriano , Glucose/metabolismo , Redes e Vias Metabólicas , Salinidade
2.
Mol Plant ; 2(6): 1336-50, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19969519

RESUMO

Copper (Cu) is an important mineral nutrient found in chloroplasts as a cofactor associated with plastocyanin and Cu/Zn superoxide dismutase (Cu/ZnSOD). Superoxide dismutases are metallo-enzymes found in most oxygenic organisms with proposed roles in reducing oxidative stress. Several recent studies in Arabidopsis have shown that microRNAs and a SQUAMOSA promoter binding protein-like7 (SPL7) transcription factor function to down-regulate the expression of many Cu-proteins, including Cu/ZnSOD in both plastids and the cytosol, during growth on low Cu. Plants contain the Cu Chaperone for SOD (CCS) that delivers Cu to Cu/ZnSODs, and, in Arabidopsis, both cytosolic and plastidic CCS versions are encoded by one gene. In this study, we demonstrate that Arabidopsis CCS transcript levels are regulated by Cu, mediated by microRNA 398 that was not previously predicted to target CCS. The microRNA target site is conserved in CCS of Oryza sativa. The data suggest that Cu-regulated microRNAs may have more mRNA targets than was previously predicted. A CCS null mutant has no measurable SOD activity in the chloroplast and cytosol, indicating an absolute requirement for CCS. When the CCS null mutant was grown on high Cu media, it lacked both Fe superoxide dismutase (FeSOD) and Cu/ZnSOD activity. However, this did not lead to a visual phenotype and no photosynthetic deficiencies were detected, even after high light stress. These results indicate that Cu/ZnSOD is not a pivotal component of the photosynthetic anti-oxidant system during growth in laboratory conditions.


Assuntos
Arabidopsis/metabolismo , Cloroplastos/metabolismo , Cobre/metabolismo , Citosol/metabolismo , Superóxido Dismutase/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Clorofila/metabolismo , MicroRNAs/genética , Mutação , Fenótipo , Regiões Promotoras Genéticas , RNA de Plantas/genética , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico
3.
New Phytol ; 182(4): 799-816, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19402880

RESUMO

Copper (Cu) is a cofactor in proteins that are involved in electron transfer reactions and is an essential micronutrient for plants. Copper delivery is accomplished by the concerted action of a set of evolutionarily conserved transporters and metallochaperones. As a result of regulation of transporters in the root and the rarity of natural soils with high Cu levels, very few plants in nature will experience Cu in toxic excess in their tissues. However, low Cu bioavailability can limit plant productivity and plants have an interesting response to impending Cu deficiency, which is regulated by an evolutionarily conserved master switch. When Cu supply is insufficient, systems to increase uptake are activated and the available Cu is utilized with economy. A number of Cu-regulated small RNA molecules, the Cu-microRNAs, are used to downregulate Cu proteins that are seemingly not essential. On low Cu, the Cu-microRNAs are upregulated by the master Cu-responsive transcription factor SPL7, which also activates expression of genes involved in Cu assimilation. This regulation allows the most important proteins, which are required for photo-autotrophic growth, to remain active over a wide range of Cu concentrations and this should broaden the range where plants can thrive.


Assuntos
Cobre/metabolismo , Homeostase , Fotossíntese , Raízes de Plantas/metabolismo , Plantas/metabolismo , Solo/química
4.
Am J Clin Nutr ; 85(3): 824-36, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17344506

RESUMO

BACKGROUND: Whereas the immunomodulatory effects of feeding either arachidonic acid (AA) or docosahexaenoic acid (DHA) separately have been previously investigated, little is known about the immunomodulatory efficacy of AA or DHA when they are fed in combination as infant formula ingredients. OBJECTIVE: The objective of this study was to investigate the ability of AA- and DHA(AA/DHA)-enriched infant formula to modulate immune responses in the neonate in response to an inactivated influenza virus vaccine. DESIGN: Neonatal piglets (n = 48) were weaned on day 2 of age and distributed into 16 blocks of 3 littermate piglets each. Within each block, piglets were randomly assigned to a control formula, AA/DHA-enriched formula (0.63% AA and 0.34% DHA), or sow milk for 30 d. On day 9, 8 blocks of piglets were immunized with an inactivated influenza virus vaccine. On days 0, 9, 16, 23, and 30 after weaning, we measured influenza virus-specific T cell proliferation and phenotype of T subsets in peripheral blood. A delayed-type hypersensitivity reaction test was administered on day 28. Cytokine messenger RNA expression was determined by quantitative real time reverse transcriptase-polymerase chain reaction on day 30. RESULTS: The influenza virus-specific CD4(+) and CD8(+) T cell ex vivo lymphoproliferative responses were significantly lower on day 23 after immunization in piglets receiving dietary AA/DHA supplementation and sow milk than in those receiving the unsupplemented control formula. The immunomodulatory effects of AA/DHA-enriched formulas were consistent with up-regulation of interleukin 10 in peripheral blood mononuclear cells. CONCLUSION: Overall, it appears that the AA/DHA-enriched formula modulated antigen-specific T cell responses in part through an interleukin 10-dependent mechanism.


Assuntos
Ácido Araquidônico/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Infecções por Orthomyxoviridae/imunologia , Linfócitos T/imunologia , Administração Oral , Animais , Animais Recém-Nascidos , Ácido Araquidônico/administração & dosagem , Ácidos Docosa-Hexaenoicos/administração & dosagem , Modelos Animais , Suínos , Linfócitos T/efeitos dos fármacos
5.
Endocrinology ; 148(7): 3068-76, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17395704

RESUMO

The adrenal steroid dehydroepiandrosterone (DHEA) may improve vascular function, but the mechanism is unclear. In the present study, we show that DHEA significantly increased cell viability, reduced caspase-3 activity, and protected both bovine and human vascular endothelial cells against serum deprivation-induced apoptosis. This effect was dose dependent and maximal at physiological concentrations (0.1-10 nM). DHEA stimulation of bovine aortic endothelial cells resulted in rapid and dose-dependent phosphorylation of Akt, which was blocked by LY294002, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K), the upstream kinase of Akt. Accordingly, inhibition of PI3K or transfection of the cells with dominant-negative Akt ablated the antiapoptotic effect of DHEA. The induced Akt phosphorylation and subsequent cytoprotective effect of DHEA were dependent on activation of Galphai proteins, but were estrogen receptor independent, because these effects were blocked by pertussis toxin but not by the estrogen receptor inhibitor ICI182,780 or the aromatase inhibitor aminoglutethimide. Finally, DHEA enhanced antiapoptotic Bcl-2 protein expression, its promoter activity, and gene transcription attributable to the activation of the PI3K/Akt pathway. Neutralization of Bcl-2 by antibody transfection significantly decreased the antiapoptotic effect of DHEA. These findings provide the first evidence that DHEA acts as a survival factor for endothelial cells by triggering the Galphai-PI3K/Akt-Bcl-2 pathway to protect cells against apoptosis. This may represent an important mechanism underlying the vascular protective effect of DHEA.


Assuntos
Apoptose/efeitos dos fármacos , Desidroepiandrosterona/farmacologia , Células Endoteliais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Caspase 3/metabolismo , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Retículo Endoplasmático/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Estradiol/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Immunoblotting , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Temperatura , Fatores de Tempo
6.
Diabetes ; 55(4): 1043-50, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16567527

RESUMO

Although genistein, a soy isoflavone, has beneficial effects on various tissues, it is unclear whether it plays a role in physiological insulin secretion. Here, we present evidence that genistein increases rapid glucose-stimulated insulin secretion (GSIS) in both insulin-secreting cell lines (INS-1 and MIN6) and mouse pancreatic islets. Genistein elicited a significant effect at a concentration as low as 10 nmol/l with a maximal effect at 5 micromol/l. The effect of genistein on GSIS was not dependent on estrogen receptor and also not related to an inhibition of protein tyrosine kinase (PTK). Consistent with its effect on GSIS, genistein increases intracellular cAMP and activates protein kinase A (PKA) in both cell lines and the islets by a mechanism that does not involve estrogen receptor or PTK. The induced cAMP by genistein, at physiological concentrations, may result primarily from enhanced adenylate cyclase activity. Pharmacological or molecular intervention of PKA activation indicated that the insulinotropic effect of genistein is primarily mediated through PKA. These findings demonstrated that genistein directly acts on pancreatic beta-cells, leading to activation of the cAMP/PKA signaling cascade to exert an insulinotropic effect, thereby providing a novel role of soy isoflavones in the regulation of insulin secretion.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Genisteína/farmacologia , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Animais , Linhagem Celular , AMP Cíclico/metabolismo , Glucose/farmacologia , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Cinética , Camundongos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...