Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 127(39): 8432-8445, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37733881

RESUMO

Nicotinamide adenine dinucleotide (NADH) is an important enzyme cofactor with emissive properties that allow it to be used in fluorescence microscopies to study cell metabolism. Its oxidized form NAD+, on the other hand, is considered to produce negligible fluorescence. In this contribution, we describe the photophysics of the isolated nicotinamidic system in both its reduced and oxidized states. This was achieved through the study of model molecules that do not carry the adenine nucleotide since its absorbance would overlap with the absorption spectrum of the nicotinamidic chromophores. We studied three model molecules: nicotinamide (niacinamide, an oxidized form without nitrogen substitution), the oxidized chromophore 1-benzyl-3-carbamoyl-pyridinium bromide (NBzOx), and its reduced form 1-benzyl-1,4-dihydronicotinamide (NBz). For a full understanding of the dynamics, we performed both femtosecond-resolved emission and transient absorption experiments. The oxidized systems, nicotinamide and NBzOx, have similar photophysics, where the originally excited bright state decays on an ultrafast timescale of less than 400 fs. The depopulation of this state is followed by excited-state positive absorption signals, which evolve in two timescales: the first one is from 1 to a few picoseconds and is followed by a second decaying component of 480 ps for nicotinamide in water and of 80-90 ps for nicotinamide in methanol and NBzOx in aqueous solution. The long decay times are assigned as the S1 lifetimes populated from the original higher-lying bright singlet, where this state is nonemissive but can be detected by transient absorption. While for NBzOx in aqueous solution and for nicotinamide in methanol, the S1 signal decays to the solvent-only level, for the aqueous solutions of nicotinamide, a small transient absorption signal remains after the 480 ps decay. This residual signal was assigned to a small population of triplet states formed during the slower S1 decay for nicotinamide in water. The experimental results were complemented by XMS-CASPT2 calculations, which reveal that in the oxidized forms, the rapid evolution of the initial π-π* state is due to a direct crossing with lower-energy dark n-π* singlet states. This coincides with the experimental observation of long-lived nonemissive states (80 to 480 ps depending on the system). On the other hand, the reduced model compound NBz has a long-lived emissive π-π* S1 state, which decays with a 510 ps time constant, similarly to the parent compound NADH. This is consistent with the XMS-CASPT2 calculations, which show that for the reduced chromophore, the dark states lie at higher energies than the bright π-π* S1 state.

2.
Chem Sci ; 14(21): 5783-5794, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37265740

RESUMO

Donor-acceptor Stenhouse adducts (DASAs) are important photo-responsive molecules that undergo electrocyclic reactions after light absorption. From these properties, DASAs have received extensive attention as photo-switches with negative photochromism. Meanwhile, several photochemical applications require isomerization events to take place in highly localized volumes at variable depths. Such focused photoreactions can be achieved if the electronic excitation is induced through a non-linear optical process. In this contribution we describe DASAs substituted with extended donor groups which provide them with significant two-photon absorption properties. We characterized the photo-induced transformation of these DASAs from the open polymethinic form to their cyclopentenic isomer with the use of 800 nm femtosecond pulses. These studies verified that the biphotonic excitation produces equivalent photoreactions as linear absorbance. We also determined these DASAs' two-photon absorption cross sections from measurements of their photoconverted yield after biphotonic excitation. As we show, specific donor sections provide these systems with important biphotonic cross-sections as high as 615 GM units. Such properties make these DASAs among the most non-linearly active photo-switchable molecules. Calculations at the TDDFT level with the optimally tuned range-separated functional OT-CAM-B3LYP, together with quadratic response methods indicate that the non-linear photochemical properties in these molecules involve higher lying electronic states above the first excited singlet. This result is consistent with the observed relation between their two-photon chemistry and the onset of their short wavelength absorption features around 400 nm. This is the first report of the non-linear photochemistry of DASAs. The two-photon isomerization properties of DASAs extend their applications to 3D-photocontrol, non-linear lithography, variable depth birefringence, and localized drug delivery schemes.

3.
J Phys Chem B ; 127(25): 5655-5667, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37327487

RESUMO

Nitrated polycyclic molecules can present the largest singlet-triplet crossing rates among organic molecules. This implies that most of these compounds have no detectable steady-state fluorescence. In addition, some nitroaromatics undergo a complex series of photoinduced atom rearrangements that result in nitric oxide dissociation. The overall photochemistry of these systems depends critically on the competition between the rapid intersystem crossing channel and other excited-state pathways. In this contribution, we sought to characterize the degree of stabilization of the S1 state due to solute-solvent interactions, and to quantify the effect of such stabilization on their photophysical pathways. We studied 2- and 4-nitropyrene (2-NP and 4-NP), which are atypically emissive nitroaromatics in a series of solvents. From steady-state and time-resolved measurements, the S1 state of these molecules shows significant stabilization as the solvent polarity is increased. On the other hand, specific triplet states that are iso-energetic with the emissive singlet (T3 for 2-NP and T2 for 4-NP) in nonpolar solvents become slightly de-stabilized upon increasing the solvent polarity. These combined effects result in rapid singlet-triplet population transfer in nonpolar solvents for both molecules. In contrast, for solvents with even slightly higher polarities, the first excited singlet is stabilized in relation to the specific triplet states, leading to much longer S1 lifetimes. These effects can be summarized as a highly solvent-dependent coupling/decoupling of the manifolds. Similar effects are also likely to be present in other nitroaromatics where there is a dynamic competition between nitric oxide dissociation and intersystem crossing. The drastic effects of the solvent polarity in the manifold crossing pathway should be taken into consideration in both theoretical and experimental studies of nitroaromatics.

4.
CRISPR J ; 6(2): 116-126, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36944123

RESUMO

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) diagnostic methods have a large potential to effectively detect SARS-CoV-2 with sensitivity and specificity nearing 100%, comparable to quantitative polymerase chain reaction. Yet, there is room for improvement. Commonly, one guide CRISPR RNA (gRNA) is used to detect the virus DNA and activate Cas collateral activity, which cleaves a reporter probe. In this study, we demonstrated that using 2-3 gRNAs in parallel can create a synergistic effect, resulting in a 4.5 × faster cleaving rate of the probe and increased sensitivity compared to using individual gRNAs. The synergy is due to the simultaneous activation of CRISPR-Cas12a and the improved performance of each gRNA. This approach was able to detect as few as 10 viral copies of the N-gene of SARS-CoV-2 RNA after a preamplification step using reverse transcription loop-mediated isothermal amplification. The method was able to accurately detect 100% of positive and negative clinical samples in ∼25 min using a fluorescence plate reader and ∼45 min with lateral flow strips.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Sistemas CRISPR-Cas/genética , RNA Viral/genética , Edição de Genes , RNA Guia de Sistemas CRISPR-Cas
5.
J Phys Chem A ; 126(16): 2498-2510, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35436116

RESUMO

We have designed and synthesized two new cyaninic Nd3+ complexes where the lanthanide emission can be induced from simultaneous two-photon absorption followed by energy migration. These complexes correspond to a molecular design that uses an antenna ligand formed by the functionalization of a heptamethine dye with 5-ol-phenanthroline or 4-phenyl-terpyridine derivatives. These complexes employ the important nonlinear optical properties of symmetric polymethines to sensitize the lanthanide ion. We verified that simultaneous biphotonic excitation indirectly induces the 4F3/2 → 4I11/2 Nd3+ emission using femtosecond laser pulses tuned below the first electronic transition of the antenna. The simultaneous two-photon excitation events initially form the nonlinear-active second excited singlet of the polymethine antenna, which rapidly evolves into its first excited singlet. This state in turn induces the formation of the emissive Nd3+ states through energy transfer. The role of the first excited singlet of the antenna as the donor state in this process was verified through time resolution of the antenna's fluorescence. These measurements also provided the rates for antenna-lanthanide energy transfer, which indicate that the phenanthroline-type ligand is approximately five times more efficient for energy transfer than the phenyl-terpyridine derivative due to their relative donor-acceptor distances. The simultaneous two-photon excitation of this polymethine antenna allows for high spatial localization of the Nd3+excitation events.

6.
Eur Urol Oncol ; 4(1): 49-55, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-31186177

RESUMO

BACKGROUND: Owing to the large variation in treatment response among patients with high-risk prostate cancer, it would be of value to use objective tools to monitor the status of bone metastases during clinical trials. Automated Bone Scan Index (aBSI) based on artificial intelligence has been proposed as an imaging biomarker for the quantification of skeletal metastases from bone scintigraphy. OBJECTIVE: To investigate how an increase in aBSI during treatment may predict clinical outcome in a randomised controlled clinical trial including patients with high-risk prostate cancer. DESIGN, SETTING, AND PARTICIPANTS: We retrospectively selected all patients from the Zometa European Study (ZEUS)/SPCG11 study with image data of sufficient quality to allow for aBSI assessment at baseline and at 48-mo follow-up. Data on aBSI were obtained using EXINIboneBSI software, blinded for clinical data and randomisation of zoledronic acid treatment. Data on age, overall survival (OS), and prostate-specific antigen (PSA) at baseline and upon follow-up were available from the study database. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Association between clinical parameters and aBSI increase during treatment was evaluated using Cox proportional-hazards regression models, Kaplan-Meier estimates, and log-rank test. Discrimination between prognostic variables was assessed using the concordance index (C-index). RESULTS AND LIMITATIONS: In this cohort, 176 patients with bone metastases and a change in aBSI from baseline to follow-up of ≤0.3 had a significantly longer median survival time than patients with an aBSI change of >0.3 (p<0.0001). The increase in aBSI was significantly associated with OS (p<0.01 and C-index=0.65), while age and PSA change were not. CONCLUSIONS: The aBSI used as an objective imaging biomarker predicted outcome in prostate cancer patients in the ZEUS/SPCG11 study. An analysis of the change in aBSI from baseline to 48-mo follow-up represents a valuable tool for prognostication and monitoring of prostate cancer patients with bone metastases. PATIENT SUMMARY: The increase in the burden of skeletal metastases, as measured by the automated Bone Scan Index (aBSI), during treatment was associated with overall survival in patients from the Zometa European Study/SPCG11 study. The aBSI may be a useful tool also in monitoring prostate cancer patients with newly developed bone metastases.


Assuntos
Inteligência Artificial , Densidade Óssea , Neoplasias Ósseas/secundário , Neoplasias da Próstata/patologia , Biomarcadores , Humanos , Masculino , Antígeno Prostático Específico , Estudos Retrospectivos , Taxa de Sobrevida , Ácido Zoledrônico
7.
Rapid Commun Mass Spectrom ; 33(8): 789-794, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30672617

RESUMO

RATIONALE: Distinct techniques employed to preserve different types of tissues may affect stable isotope analyses conducted on samples, and this is critical when field work takes place in remote areas. To investigate this, the stable isotope ratios (δ13 C and δ15 N values) obtained using two methods commonly used to preserve humpback whale (and other cetaceans) skin samples were compared. METHODS: A total of 54 pairs of skin samples of humpback whales from the southern Baja California Peninsula, Mexico, were preserved in ethanol (90%) and by freezing, between 2007 and 2009. The δ13 C and δ15 N values were determined using a PDZ Europa ANCA-GSL elemental analyzer interfaced to a PDZ Europe 20-20 isotope ratio mass spectrometer. Parametric and nonparametric tests were used to compare the isotopic results. RESULTS: A significant (t = 4.93; p = 0.000003) variation of −0.92‰ was found between the mean δ13 C values in ethanol (from −19.38‰ to −16.07‰; mean = −17.86‰) and freezing (from −20.67‰ to −16.44‰; mean = −18.78‰) techniques. No significant (U = 1314, p = 0.38) differences were observed in the δ15 N values. The δ13 C values were compared between preservation methods for each of the three years under analysis. Significant differences were observed in 2007 (t = 3.45; p = 0.0012) and 2008 (t = 3.13; p = 0.0030), but not for 2009 (t = 1.66; p = 0.12). CONCLUSIONS: Based on the results of this study, the use of ethanol to preserve humpback whale skin samples collected for stable isotope analysis is not recommended, particularly regarding the analysis of δ13 C values. This study serves as a point of reference for future research on humpback whales or other whales involving skin samples preserved by freezing or in ethanol.


Assuntos
Isótopos de Carbono/análise , Jubarte , Isótopos de Nitrogênio/análise , Pele/química , Animais , Etanol/química , Congelamento , Preservação Biológica/instrumentação , Preservação Biológica/métodos
8.
BMC Med Imaging ; 18(1): 8, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29728144

RESUMO

BACKGROUND: The Bone Scan Index (BSI) is used to quantitatively assess the total tumour burden in bone scans of patients with metastatic prostate cancer. The clinical utility of BSI has recently been validated as a prognostic imaging biomarker. However, the clinical utility of the on-treatment change in BSI is dependent on the reproducibility of bone scans. The objective of this prospective study is to evaluate the intra-patient reproducibility of two bone scan procedures performed at a one-week interval. METHODS: We prospectively studied prostate cancer patients who were referred for bone scintigraphy at our centres according to clinical routine. All patients underwent two whole-body bone scans: one for clinical routine purposes and a second one as a repeated scan after approximately one week. BSI values were obtained for each bone scintigraph using EXINI boneBSI software. RESULTS: A total of 20 patients were enrolled. There was no statistical difference between the BSI values of the first (median = 0.66, range 0-40.77) and second (median = 0.63, range 0-22.98) bone scans (p = 0.41). The median difference in BSI between the clinical routine and repeated scans was - 0.005 (range - 17.79 to 0). The 95% confidence interval for the median value was - 0.1 to 0. A separate analysis was performed for patients with BSI ≤ 10 (n = 17). Differences in BSI were smaller for patients with BSI ≤ 10 compared to the whole cohort (median - 0.1, range - 2.2-0, 95% confidence interval - 0.1 to 0). CONCLUSIONS: The automated BSI demonstrated high intra-individual reproducibility for BSI ≤ 10 in the two repeated bone scans of patients with prostate cancer. The study supports the use of BSI as a quantitative parameter to evaluate the change in total tumour burden in bone scans.


Assuntos
Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/secundário , Osso e Ossos/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Osso e Ossos/patologia , Humanos , Masculino , Estudos Prospectivos , Cintilografia , Reprodutibilidade dos Testes , Imagem Corporal Total
9.
Artigo em Inglês | MEDLINE | ID: mdl-29633470

RESUMO

Bone Scan Index (BSI) is a validated imaging biomarker to objectively assess tumour burden in bone in patients with prostate cancer, and can be used to monitor treatment response. It is not known if BSI is significantly altered when images are acquired at a time difference of 1 h. The aim of this study was to investigate if automatic calculation of BSI is affected when images are acquired 1 hour apart, after approximately 3 and 4 h. We prospectively studied patients with prostate cancer who were referred for bone scintigraphy according to clinical routine. The patients performed a whole-body bone scan at approximately 3 h after injection of radiolabelled bisphosphonate and a second 1 h after the first. BSI values for each bone scintigraphy were obtained using EXINI boneBSI software. A total of 25 patients were included. Median BSI for the first acquisition was 0·05 (range 0-11·93) and for the second acquisition 0·21 (range 0-13·06). There was a statistically significant increase in BSI at the second image acquisition compared to the first (P<0·001). In seven of 25 patients (28%) and in seven of 13 patients with BSI > 0 (54%), a clinically significant increase (>0·3) was observed. The time between injection and scanning should be fixed when changes in BSI are important, for example when monitoring therapeutic efficacy.

10.
J Nucl Med ; 57(12): 1865-1871, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27445289

RESUMO

The effect of the procedural variability in image acquisition on the quantitative assessment of bone scan is unknown. Here, we have developed and performed preanalytical studies to assess the impact of the variability in scanning speed and in vendor-specific γ-camera on reproducibility and accuracy of the automated bone scan index (BSI). METHODS: Two separate preanalytical studies were performed: a patient study and a simulation study. In the patient study, to evaluate the effect on BSI reproducibility, repeated bone scans were prospectively obtained from metastatic prostate cancer patients enrolled in 3 groups (Grp). In Grp1, the repeated scan speed and the γ-camera vendor were the same as that of the original scan. In Grp2, the repeated scan was twice the speed of the original scan. In Grp3, the repeated scan used a different γ-camera vendor than that used in the original scan. In the simulation study, to evaluate the effect on BSI accuracy, bone scans of a virtual phantom with predefined skeletal tumor burden (phantom-BSI) were simulated against the range of image counts (0.2, 0.5, 1.0, and 1.5 million) and separately against the resolution settings of the γ-cameras. The automated BSI was measured with a computer-automated platform. Reproducibility was measured as the absolute difference between the repeated BSI values, and accuracy was measured as the absolute difference between the observed BSI and the phantom-BSI values. Descriptive statistics were used to compare the generated data. RESULTS: In the patient study, 75 patients, 25 in each group, were enrolled. The reproducibility of Grp2 (mean ± SD, 0.35 ± 0.59) was observed to be significantly lower than that of Grp1 (mean ± SD, 0.10 ± 0.13; P < 0.0001) and that of Grp3 (mean ± SD, 0.09 ± 0.10; P < 0.0001). However, no significant difference was observed between the reproducibility of Grp3 and Grp1 (P = 0.388). In the simulation study, the accuracy at 0.5 million counts (mean ± SD, 0.57 ± 0.38) and at 0.2 million counts (mean ± SD, 4.67 ± 0.85) was significantly lower than that observed at 1.5 million counts (mean ± SD, 0.20 ± 0.26; P < 0.0001). No significant difference was observed in the accuracy data of the simulation study with vendor-specific γ-cameras (P = 0.266). CONCLUSION: In this study, we observed that the automated BSI accuracy and reproducibility were dependent on scanning speed but not on the vendor-specific γ-cameras. Prospective BSI studies should standardize scanning speed of bone scans to obtain image counts at or above 1.5 million.


Assuntos
Osso e Ossos/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Cintilografia/métodos , Automação , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/secundário , Humanos , Modelos Biológicos , Cintilografia/instrumentação , Reprodutibilidade dos Testes
11.
Eur Urol Focus ; 2(5): 547-552, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28723521

RESUMO

BACKGROUND: ODM-201, a new-generation androgen receptor inhibitor, has shown clinical efficacy in prostate cancer (PCa). Quantitative methods are needed to accurately assess changes in bone as a measurement of treatment response. The Bone Scan Index (BSI) reflects the percentage of skeletal mass a given tumour affects. OBJECTIVE: To evaluate the predictive value of the BSI in metastatic castration-resistant PCa (mCRPC) patients undergoing treatment with ODM-201. DESIGN, SETTING, AND PARTICIPANTS: From a total of 134 mCRPC patients who participated in the Activity and Safety of ODM-201 in Patients with Progressive Metastatic Castration-resistant Prostate Cancer clinical trial and received ODM-201, we retrospectively selected all those patients who had bone scan image data of sufficient quality to allow for both baseline and 12-wk follow-up BSI-assessments (n=47). We used the automated EXINI bone BSI software (EXINI Diagnostics AB, Lund, Sweden) to obtain BSI data. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: We used the Cox proportional hazards model and Kaplan-Meier estimates to investigate the association among BSI, traditional clinical parameters, disease progression, and radiographic progression-free survival (rPFS). RESULTS AND LIMITATIONS: In the BSI assessments, at follow-up, patients who had a decrease or at most a 20% increase from BSI baseline had a significantly longer time to progression in bone (median not reached vs 23 wk, hazard ratio [HR]: 0.20; 95% confidence interval [CI], 0.07-0.58; p=0.003) and rPFS (median: 50 wk vs 14 wk; HR: 0.35; 95% CI, 0.17-0.74; p=0.006) than those who had a BSI increase >20% during treatment. CONCLUSIONS: The on-treatment change in BSI was significantly associated with rPFS in mCRPC patients, and an increase >20% in BSI predicted reduced rPFS. BSI for quantification of bone metastases may be a valuable complementary method for evaluation of treatment response in mCRPC patients. PATIENT SUMMARY: An increase in Bone Scan Index (BSI) was associated with shorter time to disease progression in patients treated with ODM-201. BSI may be a valuable method of complementing treatment response evaluation in patients with advanced prostate cancer.

12.
Eur Urol Focus ; 2(5): 540-546, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28723520

RESUMO

BACKGROUND: Abiraterone acetate (AA) prolongs survival in metastatic castration-resistant prostate cancer (mCRPC) patients. To measure treatment response accurately in bone, quantitative methods are needed. The Bone Scan Index (BSI), a prognostic imaging biomarker, reflects the tumour burden in bone as a percentage of the total skeletal mass calculated from bone scintigraphy. OBJECTIVE: To evaluate the value of BSI as a biomarker for outcome evaluation in mCRPC patients on treatment with AA according to clinical routine. DESIGN, SETTING, AND PARTICIPANTS: We retrospectively studied 104 mCRPC patients who received AA following disease progression after chemotherapy. All patients underwent whole-body bone scintigraphy before and during AA treatment. Baseline and follow-up BSI data were obtained using EXINI BoneBSI software (EXINI Diagnostics AB, Lund, Sweden). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Associations between change in BSI, clinical parameters at follow-up, and overall survival (OS) were evaluated using the Cox proportional hazards regression models and Kaplan-Meier estimates. Discrimination between variables was assessed using the concordance index (C-index). RESULTS AND LIMITATIONS: Patients with an increase in BSI at follow-up of at most 0.30 (n=54) had a significantly longer median survival time than those with an increase of BSI >0.30 (n=50) (median: 16 vs 10 mo; p=0.001). BSI change was also associated with OS in a multivariate Cox analysis including commonly used clinical parameters for prognosis (C-index=0.7; hazard ratio: 1.1; p=0.03). The retrospective design was a limitation. CONCLUSIONS: Change in BSI was significantly associated with OS in mCRPC patients undergoing AA treatment following disease progression in a postchemotherapy setting. BSI may be a useful imaging biomarker for outcome evaluation in this group of patients, and it could be a valuable complementary tool in monitoring patients with mCRPC on second-line therapies. PATIENT SUMMARY: Bone Scan Index (BSI) change is related to survival time in metastatic castration-resistant prostate cancer (mCRPC) patients on abiraterone acetate. BSI may be a valuable complementary decision-making tool supporting physicians monitoring patients with mCRPC on second-line therapies.

13.
EJNMMI Res ; 4: 58, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25386390

RESUMO

BACKGROUND: Bone Scan Index (BSI) is a quantitative measurement of tumour burden in the skeleton calculated from bone scan images. When analysed at the time of diagnosis, it has been shown to provide prognostic information on survival in men with metastatic prostate cancer (PCa). In this study, we evaluated the prognostic value of BSI during androgen deprivation therapy (ADT). METHODS: Prostate cancer patients who were at high risk of a poor outcome and who had undergone bone scan at the time of diagnosis and during ADT were recruited from two university hospitals for a retrospective study. BSI at baseline and follow-up were calculated using an automated software package (EXINIbone(bsi)). Associations between BSI, other prognostic biomarkers and overall survival (OS) were evaluated using a Cox proportional hazards regression model. RESULTS: One hundred forty-six PCa patients were included in the study. A total of 102 patient deaths were registered, with a median survival time after the follow-up bone scan of 2.4 years (interquartile range (IQR) =0.8 to 4.4). Both at baseline and during ADT, BSI was significantly associated with OS in univariate and multivariate analyses. When BSI was added to a prognostic base model including age, prostate-specific antigen, clinical tumour stage and Gleason score, the concordance index increased from 0.73 to 0.77 (p =0.0005) at baseline and from 0.77 to 0.82 (p <0.0001) during ADT. CONCLUSIONS: Automated BSI during ADT is an independent prognostic indicator of OS in PCa patients with bone metastasis. It represents an emerging imaging biomarker that can be used in a prognostic model for risk stratification of PCa patients at the time of diagnosis and at later stages of the disease. BSI could then help physicians identify patients who could benefit from more aggressive therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...