Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 9(10): 2205-24, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20368288

RESUMO

Nuclear pore complexes (NPCs) gate the only conduits for nucleocytoplasmic transport in eukaryotes. Their gate is formed by nucleoporins containing large intrinsically disordered domains with multiple phenylalanine-glycine repeats (FG domains). In combination, these are hypothesized to form a structurally and chemically homogeneous network of random coils at the NPC center, which sorts macromolecules by size and hydrophobicity. Instead, we found that FG domains are structurally and chemically heterogeneous. They adopt distinct categories of intrinsically disordered structures in non-random distributions. Some adopt globular, collapsed coil configurations and are characterized by a low charge content. Others are highly charged and adopt more dynamic, extended coil conformations. Interestingly, several FG nucleoporins feature both types of structures in a bimodal distribution along their polypeptide chain. This distribution functionally correlates with the attractive or repulsive character of their interactions with collapsed coil FG domains displaying cohesion toward one another and extended coil FG domains displaying repulsion. Topologically, these bipartite FG domains may resemble sticky molten globules connected to the tip of relaxed or extended coils. Within the NPC, the crowding of FG nucleoporins and the segregation of their disordered structures based on their topology, dimensions, and cohesive character could force the FG domains to form a tubular gate structure or transporter at the NPC center featuring two separate zones of traffic with distinct physicochemical properties.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares/química , Sequência de Aminoácidos , Eletroforese em Gel de Poliacrilamida , Glicina/química , Dados de Sequência Molecular , Fenilalanina/química , Conformação Proteica , Homologia de Sequência de Aminoácidos
2.
Biochemistry ; 47(16): 4692-700, 2008 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-18376847

RESUMO

Spiders spin high performance fibers with diverse biological functions and mechanical properties. Molecular and biochemical studies of spider prey wrapping silks have revealed the presence of the aciniform silk fibroin AcSp1-like. In our studies we demonstrate the presence of a second distinct polypeptide present within prey wrapping silk. Combining matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry and reverse genetics, we have isolated a novel gene called MiSp1-like and demonstrate that its protein product is a constituent of prey wrap silks from the black widow spider, Latrodectus hesperus. BLAST searches of the NCBInr protein database using the amino acid sequence of MiSp1-like revealed similarity to the conserved C-terminal domain of silk family members. In particular, MiSp1-like showed the highest degree of sequence similarity to the nonrepetitive C-termini of published orb-weaver minor ampullate fibroin molecules. Analysis of the internal amino acid sequence of the black widow MiSp1-like revealed polyalanine stretches interrupted by glycine residues and glycine-alanine couplets within MiSp1-like as well as repeats of the heptameric sequence AGGYGQG. Real-time quantitative PCR analysis demonstrates that the MiSp1-like gene displays a minor ampullate gland-restricted pattern of expression. Furthermore, amino acid composition analysis, coupled with scanning electron microscopy of raw wrapping silk, supports the assertion that minor ampullate silks are important constituents of black widow spider prey wrap silk. Collectively, our findings provide direct molecular evidence for the involvement of minor ampullate fibroins in swathing silks and suggest composite materials play an important role in the wrap attack process for cob-weavers.


Assuntos
Seda/química , Seda/metabolismo , Aranhas/química , Aranhas/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , DNA Complementar/genética , Espectrometria de Massas , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , RNA Mensageiro/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Seda/genética , Seda/ultraestrutura , Solubilidade , Aranhas/genética , Aranhas/ultraestrutura , Tripsina/metabolismo
3.
J Biol Chem ; 282(48): 35088-97, 2007 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-17921147

RESUMO

Spiders produce high performance fibers with diverse mechanical properties and biological functions. Molecular and biochemical studies of spider egg case silk have revealed that the main constituent of the large diameter fiber contains the fibroin TuSp1. Here we demonstrate by SDS-PAGE and protein silver staining the presence of a distinct approximately 300-kDa polypeptide that is found in solubilized egg case sacs. Combining matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry and reverse genetics, we have isolated a novel gene called AcSp1-like and demonstrate that its protein product is assembled into the small diameter fibers of egg case sacs and wrapping silks from the black widow spider, Latrodectus hesperus. BLAST searches of the NCBInr protein data base using the amino acid sequence of AcSp1-like revealed similarity to AcSp1, an inferred protein proposed to be a component of wrapping silk. However, the AcSp1-like protein was found to display more nonuniformity in its internal iterated repeat modules than the putative AcSp1 fibroin. Real time quantitative PCR analysis demonstrates that the AcSp1-like gene displays an aciniform gland-restricted pattern of expression. The amino acid composition of the fibroins extracted from the luminal contents of the aciniform glands was remarkably similar to the predicted amino acid composition of the AcSp1-like protein, which supports the assertion that AcSp1-like protein represents the major constituent stored within the aciniform gland. Collectively, our findings provide the first direct molecular evidence for the involvement of the aciniform gland in the production of a common fibroin that is assembled into the small diameter threads of egg case and wrapping silk of cob weavers.


Assuntos
Fibroínas/química , Sequência de Aminoácidos , Animais , Viúva Negra , Clonagem Molecular , Biologia Computacional , Fibroínas/metabolismo , Espectrometria de Massas , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Óvulo/metabolismo , Peptídeos/química , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Seda , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tripsina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA