Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 588: 305-314, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33412351

RESUMO

Metal-organic frameworks (MOFs) nanocomposites are under the limelight due to their unique electronic, optical, and surface properties for various applications. Plasmonic MOFs enabled by noble metal nanostructures are an emerging class of MOF nanocomposites with efficient solar light-harvesting capability. However, major concerns such as poor photostability, sophisticated synthesis processes, and high fabrication cost are raised. Here, we develop a novel plasmonic MOF nanocomposite consisting of the ultra-thin degenerately doped molybdenum oxide core and the flexible iron MOF (FeMOF) shell through a hydrothermal growth, featuring low cost, facile synthesis, and non-toxicity. More importantly, the incorporation of plasmonic oxides in the highly porous MOF structure enhances the visible light absorbability, demonstrating improved photobleaching performances of various azo and non-azo dyes compared to that of pure FeMOF without the incorporation of oxidative agents. Furthermore, the nanocomposite exhibits enhanced sensitivity and selectivity towards NO2 gas at room temperature, attributed to the electron-rich surface of plasmonic oxides. This work possibly broadens the exploration of plasmonic MOF nanocomposites for practical and efficient solar energy harvesting, environmental remediation, and environmental monitoring applications.

2.
ACS Nano ; 15(3): 4045-4053, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33496575

RESUMO

Ultrathin transparent conductive oxides (TCOs) are emerging candidates for next-generation transparent electronics. Indium oxide (In2O3) incorporated with post-transition-metal ions (e.g., Sn) has been widely studied due to their excellent optical transparency and electrical conductivity. However, their electron transport properties are deteriorated at the ultrathin two-dimensional (2D) morphology compared to that of intrinsic In2O3. Here, we explore the domain of transition-metal dopants in ultrathin In2O3 with the thicknesses down to the single-unit-cell limit, which is realized in a large area using a low-temperature liquid metal printing technique. Zn dopant is selected as a representative to incorporate into the In2O3 rhombohedral crystal framework, which results in the gradual transition of the host to quasimetallic. While the optical transmittance is maintained above 98%, an electron field-effect mobility of up to 87 cm2 V-1 s-1 and a considerable sub-kΩ-1 cm-1 ranged electrical conductivity are achieved when the Zn doping level is optimized, which are in a combination significantly improved compared to those of reported ultrathin TCOs. This work presents various opportunities for developing high-performance flexible transparent electronics based on emerging ultrathin TCO candidates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA