Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Phys Med ; 123: 103395, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38843650

RESUMO

PURPOSE: Preclinical PET scanners often have limited axial field-of-view for whole-body (WB) scanning of the small-animal. Step-and-shoot(S&S) acquisition mode requires multiple bed positions (BPs) to cover the scan length. Alternatively, in Continuous Bed Motion(CBM) mode, data acquisition is performed while the bed is continuously moving. In this study, to reduce acquisition time and enhance image quality, the CBM acquisition protocol was optimized and implemented on the Xtrim-PET preclinical scanner for WB imaging. METHODS: The over-scan percentage(OS%) in CBM mode was optimized by Monte Carlo simulation. Bed movement speed was optimized considering ranges from 0.1 to 2.0 mm s-1, and absolute system sensitivities with the optimal OS% were calculated. The performance of the scanner in CBM mode was measured, and compared with S&S mode based on the NEMA-NU4 standard. RESULTS: The optimal trade-off between absolute sensitivity and uniformity of sensitivity profile was achieved at OS-50 %. In comparison to S&S mode with maximum ring differences (MRD) of 9 and 23, the calculated equivalent speeds in CBM(OS-50 %) mode were 0.3 and 0.14 mm s-1, respectively. In terms of data acquisition with equal sensitivity in both CBM(OS-50 %) and S&S(MRD-9) modes, the total scan time in CBM mode decreased by 25.9 %, 47.7 %, 54.7 %, and 58.2 % for scan lengths of 1 to 4 BPs, respectively. CONCLUSION: The CBM mode enhances WB PET scans for small-animals, offering rapid data acquisition, high system sensitivity, and uniform axial sensitivity, leading to improved image quality. Its efficiency and customizable scan length and bed speed make it a superior alternative.


Assuntos
Método de Monte Carlo , Tomografia por Emissão de Pósitrons , Imagem Corporal Total , Tomografia por Emissão de Pósitrons/instrumentação , Imagem Corporal Total/instrumentação , Imagem Corporal Total/métodos , Animais , Desenho de Equipamento , Processamento de Imagem Assistida por Computador/métodos , Movimento , Imagens de Fantasmas , Movimento (Física) , Simulação por Computador
2.
Phys Med Biol ; 65(4): 045013, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31855857

RESUMO

We propose a small-animal PET scanner design combining two sets of monolithic crystals with two different thicknesses. The detectors with thinner crystals serve for high resolution imaging while the thicker crystals retain the detection efficiency. Two small-animal PET models based on 10 and 12 detector blocks made of monolithic LYSO crystals were implemented in the GEANT4 Monte Carlo toolkit. In each of these models, half of the detector blocks consisted of a crystal thickness of 10 mm whereas the second half had a crystal thickness of 2 mm. The scintillator crystals were coupled to SiPM arrays. For the first model, the detector blocks were arranged in a full-ring polygonal geometry in such a way that detector blocks with the same thickness were sitting opposite to each other. For the second model, detector blocks with different crystal thicknesses were facing each other. The performance of the proposed PET models was assessed using standard parameters, including spatial resolution, sensitivity and noise equivalent count rate. Comparison was made with conventional PET models with crystal thicknesses of 2 mm, 6 mm and 10 mm. PET models with a crystal thickness of 2 mm led to the highest spatial resolution (up to 0.6 mm FWHM) at the cost of poor absolute sensitivity (2.5%). On the other hand, PET models with a crystal thickness of 10 mm led to good detection efficiency (4.4%), yet with substantial degradation of spatial resolution (1.2 mm FWHM). The proposed PET models with thick and thin crystals exhibited an optimal trade-off between spatial resolution and sensitivity outperforming the PET model with fixed 6 mm crystal by achieving a spatial resolution of 0.7 mm and absolute sensitivity of 3.7%. The novel proposed PET design concept achieved an optimal trade-off between the sensitivity and spatial resolution by combining two sets of monolithic crystals.


Assuntos
Tomografia por Emissão de Pósitrons/instrumentação , Contagem de Cintilação/instrumentação , Razão Sinal-Ruído , Animais , Desenho de Equipamento , Método de Monte Carlo , Fatores de Tempo
3.
IET Nanobiotechnol ; 13(9): 957-961, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31811766

RESUMO

The purpose of this study is to measure the concentration of gold nanoparticles (AuNPs) attached to folic acid through cysteamin as the linker (FA-Cys-AuNPs) and AuNPs in KB human nasopharyngeal cancer cells using dual-energy CT (DECT). In this study, nanoparticles with a size of ∼15 nm were synthesized and characterised using UV-Vis, TEM, FTIR and ICP-OES analyses. The non-toxicity of nanoparticles was confirmed by MTT assay under various concentrations (40-100 µg/ml) and incubation times (6, 12 and 24 h). To develop an algorithm for revealing different concentrations of AuNPs in cells, a corresponding physical phantom filled with 0.5 ml vials containing FA-Cys-AuNPs was used. The CT scan was performed at two energy levels (80 and 140 kVp). One feature of DECT is material decomposition, which allows separation and identification of different elements. The values obtained from the DECT algorithm were compared with values quantitatively measured by ICP-OES. Cells were also incubated with AuNPs and FA-Cys-AuNPs at different concentrations and incubation times. Subsequently, by increasing the incubation time in the presence of FA-Cys-AuNPs, in comparison with AuNPs, DECT pixels were increased. Thus, FA-Cys-AuNPs could be a suitable candidate for targeted contrast agent in DECT molecular imaging of nasopharyngeal cancer cells.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Neoplasias Nasofaríngeas/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Linhagem Celular Tumoral , Humanos , Nanopartículas Metálicas/toxicidade , Neoplasias Nasofaríngeas/patologia , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Nucl Med Commun ; 27(4): 339-46, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16531919

RESUMO

BACKGROUND: The advent of dual-modality positron emission tomography/computed tomography (PET/CT) imaging has revolutionized the practice of clinical oncology by improving lesion localization and facilitating treatment planning for radiation therapy. In addition, the use of CT images for CT-based attenuation correction (CTAC) allows the overall scanning time to be decreased and a noise-free attenuation map (micromap) to be created. The most common procedure requires a piecewise linear calibration curve acquired under standard imaging conditions to convert the patient's CT image from low effective CT energy into an attenuation map at 511 keV. AIM: To evaluate the effect of the tube voltage on the accuracy of CTAC. METHODS: As different tube voltages are employed in current PET/CT scanning protocols, depending on the size of the patient and the region under study, the impact of using a single calibration curve on the accuracy of CTAC for images acquired at different tube voltages was investigated through quantitative analysis of the created micromaps, generated attenuation correction factors and reconstructed neurological PET data using anthropomorphic experimental phantom and clinical studies. RESULTS: For CT images acquired at 80 and 140 kVp, average relative differences of -2.9% and 0.7%, respectively, from the images acquired at 120 kVp were observed for the absolute activity concentrations in five regions of the anthropomorphic striatal phantom when CT images were converted using a single calibration curve derived at 120 kVp. Likewise, average relative differences of 1.9% and -0.6% were observed when CT images were acquired at 120 kVp and CTAC used calibration curves derived at 80 and 140 kVp, respectively. CONCLUSION: The use of a single calibration curve acquired under standard imaging conditions does not affect, to a visible or measurable extent, neurological PET images reconstructed using CTAC when CT images are acquired in different conditions.


Assuntos
Algoritmos , Artefatos , Encefalopatias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Calibragem , Humanos , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Índice de Gravidade de Doença , Técnica de Subtração , Tomografia Computadorizada por Raios X/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...