Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-466984

RESUMO

Neutralizing antibodies (nAbs) that target the SARS-CoV-2 spike protein are approved for treatment of COVID-19. However, with the emergence of variants of concern, there is a need for new treatment options. We report a novel format that enables modular assembly of bi-paratopic, tetravalent nAbs with antigen-binding sites from two distinct nAbs. The tetravalent nAb was purified in high yield, and it exhibited biophysical characteristics that were comparable to those of approved therapeutic antibodies. The tetravalent nAb bound to the spike protein trimer at least 100-fold more tightly than bivalent IgGs (apparent KD < 1 pM), and it exhibited extremely high potencies against a broad array of pseudoviruses, chimeric viruses, and authentic virus variants. Together, these results establish the tetravalent diabody-Fc-Fab as a robust, modular platform for rapid production of drug-grade nAbs with potencies and breadth of coverage that greatly exceed those of conventional bivalent IgGs.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-362848

RESUMO

Neutralizing antibodies (nAbs) hold promise as effective therapeutics against COVID-19. Here, we describe protein engineering and modular design principles that have led to the development of synthetic bivalent and tetravalent nAbs against SARS-CoV-2. The best nAb targets the host receptor binding site of the viral S-protein and its tetravalent versions can block entry with a potency that exceeds the bivalent nAbs by an order of magnitude. Structural studies show that both the bivalent and tetravalent nAbs can make multivalent interactions with a single S-protein trimer, observations consistent with the avidity and potency of these molecules. Significantly, we show that the tetravalent nAbs show much increased tolerance to potential virus escape mutants. Bivalent and tetravalent nAbs can be produced at large-scale and are as stable and specific as approved antibody drugs. Our results provide a general framework for developing potent antiviral therapies against COVID-19 and related viral threats, and our strategy can be readily applied to any antibody drug currently in development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA