Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 30(2): 228-241, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30427757

RESUMO

HSP40s are regarded as cochaperones, perpetually shuttling client polypeptides to HSP70s for refolding. However, many HSP40s that are central for disparate processes diverge from this paradigm. To elucidate the noncanonical mechanisms, we investigated HSP40 in the radial spoke (RS) complex in flagella. Disruption of the gene by the MRC1 transposon in Chlamydomonas resulted in jerky flagella. Traditional electron microscopy, cryo-electron tomography, and sub-tomogram analysis revealed RSs of various altered morphologies that, unexpectedly, differed between the two RS species. This indicates that HSP40 locks the RS into a functionally rigid conformation, facilitating its interactions with the adjacent central pair apparatus for transducing locally varied mechanical feedback, which permits rhythmic beating. Missing HSP40, like missing RSs, could be restored in a tip-to-base direction when HSP40 mutants fused with a HSP40 donor cell. However, without concomitant de novo RS assembly, the repair was exceedingly slow, suggesting HSP40/RS-coupled intraflagellar trafficking and assembly. Biochemical analysis and modeling uncovered spoke HSP40's cochaperone traits. On the basis of our data, we propose that HSP40 accompanies its client RS precursor when traveling to the flagellar tip. Upon arrival, both refold in concert to assemble into the mature configuration. HSP40's roles in chaperoning and structural maintenance shed new light on its versatility and flagellar biology.


Assuntos
Flagelos/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Axonema/metabolismo , Axonema/ultraestrutura , Proteínas de Bactérias/metabolismo , Chlamydomonas , Elementos de DNA Transponíveis/genética , Tomografia com Microscopia Eletrônica , Flagelos/ultraestrutura , Modelos Moleculares , Mutagênese Insercional/genética , Mutação/genética , Ligação Proteica
2.
Proc Natl Acad Sci U S A ; 114(46): E9821-E9828, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29087332

RESUMO

Nucleotidyl cyclases, including membrane-integral and soluble adenylyl and guanylyl cyclases, are central components in a wide range of signaling pathways. These proteins are architecturally diverse, yet many of them share a conserved feature, a helical region that precedes the catalytic cyclase domain. The role of this region in cyclase dimerization has been a subject of debate. Although mutations within this region in various cyclases have been linked to genetic diseases, the molecular details of their effects on the enzymes remain unknown. Here, we report an X-ray structure of the cytosolic portion of the membrane-integral adenylyl cyclase Cya from Mycobacterium intracellulare in a nucleotide-bound state. The helical domains of each Cya monomer form a tight hairpin, bringing the two catalytic domains into an active dimerized state. Mutations in the helical domain of Cya mimic the disease-related mutations in human proteins, recapitulating the profiles of the corresponding mutated enzymes, adenylyl cyclase-5 and retinal guanylyl cyclase-1. Our experiments with full-length Cya and its cytosolic domain link the mutations to protein stability, and the ability to induce an active dimeric conformation of the catalytic domains. Sequence conservation indicates that this domain is an integral part of cyclase machinery across protein families and species. Our study provides evidence for a role of the helical domain in establishing a catalytically competent dimeric cyclase conformation. Our results also suggest that the disease-associated mutations in the corresponding regions of human nucleotidyl cyclases disrupt the normal helical domain structure.


Assuntos
Adenilil Ciclases/química , Adenilil Ciclases/metabolismo , Domínio Catalítico , Complexo Mycobacterium avium/enzimologia , Conformação Proteica , Adenilil Ciclases/genética , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência Conservada , Cristalografia por Raios X , Citosol/enzimologia , Dimerização , Ativação Enzimática , Estabilidade Enzimática , Guanilato Ciclase/química , Guanilato Ciclase/genética , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Complexo Mycobacterium avium/genética , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Alinhamento de Sequência , Análise de Sequência de Proteína
3.
Sci Rep ; 7(1): 14893, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29097679

RESUMO

Interactions between microtubule (MT) interacting and trafficking (MIT) domains and their binding proteins are important for the accurate progression of many cellular processes that require the AAA+ ATPase machinery. Therefore, knowledge on the structural basis of MIT domain interactions is crucial for understanding the molecular mechanisms underlying AAA+ ATPase function. Katanin is a MT-severing AAA+ ATPase that consists of p60 and p80 subunits. Although, the hexameric p60 subunit is active alone, its association with the p80 subunit greatly enhances both the MT-binding and -severing activities of katanin. However, the molecular mechanism of how the p80 subunit contributes to katanin function is currently unknown. Here, we structurally and functionally characterized the interaction between the two katanin subunits that is mediated by the p60-MIT domain and the p80 C-terminal domain (p80-CTD). We show that p60-MIT and p80-CTD form a tight heterodimeric complex, whose high-resolution structure we determined by X-ray crystallography. Based on the crystal structure, we identified two conserved charged residues that are important for p60-MIT:p80-CTD complex formation and katanin function. Moreover, p60-MIT was compared with other MIT domain structures and similarities are discussed.


Assuntos
Katanina/metabolismo , Animais , Cristalografia por Raios X , Katanina/química , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas , Multimerização Proteica
4.
ACS Nano ; 11(11): 11358-11367, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29045787

RESUMO

Interactions between proteins and surfaces in combination with hydrodynamic flow and mechanical agitation can often trigger the conversion of soluble peptides and proteins into aggregates, including amyloid fibrils. Despite the extensive literature on the empirical effects of surfaces and mechanical forces on the formation of amyloids, the molecular details of the mechanisms underlying this behavior are still elusive. This limitation is, in part, due to the complex reaction network underlying the formation of amyloids, where several microscopic reactions of nucleation and growth can occur both at the interfaces and in bulk. In this work, we design a high-throughput assay based on nanoparticles and we apply a chemical kinetic platform to analyze the mechanisms underlying the effect of surfaces and mechanical forces on the formation of amyloid fibrils from human insulin under physiological conditions. By considering a variety of polymeric nanoparticles with different surface properties we explore a broad range of repulsive and attractive interactions between insulin and surfaces. Our analysis shows that hydrophobic interfaces induce the formation of amyloid fibrils by specifically promoting the primary heterogeneous nucleation rate. In contrast, mechanical forces accelerate the formation of amyloid fibrils by favoring mass transport and further amplify the number of fibrils by promoting fragmentation events. Thus, surfaces and agitation have a combined effect on the kinetics of protein aggregation observed at the macroscopic level but, individually, they each affect distinct microscopic reaction steps: the presence of interfaces generates primary nucleation events of fibril formation, which is then amplified by mechanical forces. These results suggest that the inhibition of surface-induced heterogeneous nucleation should be considered a primary target to suppress aggregation and explain why in many systems the simultaneous presence of surfaces and hydrodynamic flow enhances protein aggregation.


Assuntos
Amiloide/química , Nanopartículas/química , Fenômenos Biomecânicos , Ensaios de Triagem em Larga Escala , Humanos , Interações Hidrofóbicas e Hidrofílicas , Insulina/química , Cinética , Modelos Moleculares , Propriedades de Superfície
5.
J Struct Biol ; 200(1): 36-44, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28864297

RESUMO

Phosphatidylinositol 4-kinase IIIß (PI4KB) is responsible for the synthesis of the Golgi and trans-Golgi network (TGN) pool of phosphatidylinositol 4-phospahte (PI4P). PI4P is the defining lipid hallmark of Golgi and TGN and also serves as a signaling lipid and as a precursor for higher phosphoinositides. In addition, PI4KB is hijacked by many single stranded plus RNA (+RNA) viruses to generate PI4P-rich membranes that serve as viral replication organelles. Given the importance of this enzyme in cells, it has to be regulated. 14-3-3 proteins bind PI4KB upon its phosphorylation by protein kinase D, however, the structural basis of PI4KB recognition by 14-3-3 proteins is unknown. Here, we characterized the PI4KB:14-3-3 protein complex biophysically and structurally. We discovered that the PI4KB:14-3-3 protein complex is tight and is formed with 2:2 stoichiometry. Surprisingly, the enzymatic activity of PI4KB is not directly modulated by 14-3-3 proteins. However, 14-3-3 proteins protect PI4KB from proteolytic degradation in vitro. Our structural analysis revealed that the PI4KB:14-3-3 protein complex is flexible but mostly within the disordered regions connecting the 14-3-3 binding site of the PI4KB with the rest of the PI4KB enzyme. It also predicted no direct modulation of PI4KB enzymatic activity by 14-3-3 proteins and that 14-3-3 binding will not interfere with PI4KB recruitment to the membrane by the ACBD3 protein. In addition, the structural analysis explains the observed protection from degradation; it revealed that several disordered regions of PI4KB become protected from proteolytical degradation upon 14-3-3 binding. All the structural predictions were subsequently biochemically validated.


Assuntos
Proteínas 14-3-3/química , Fosfotransferases (Aceptor do Grupo Álcool)/química , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Proteólise , Espalhamento a Baixo Ângulo
7.
Nat Cell Biol ; 19(5): 480-492, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28436967

RESUMO

ASPM (known as Asp in fly and ASPM-1 in worm) is a microcephaly-associated protein family that regulates spindle architecture, but the underlying mechanism is poorly understood. Here, we show that ASPM forms a complex with another protein linked to microcephaly, the microtubule-severing ATPase katanin. ASPM and katanin localize to spindle poles in a mutually dependent manner and regulate spindle flux. X-ray crystallography revealed that the heterodimer formed by the N- and C-terminal domains of the katanin subunits p60 and p80, respectively, binds conserved motifs in ASPM. Reconstitution experiments demonstrated that ASPM autonomously tracks growing microtubule minus ends and inhibits their growth, while katanin decorates and bends both ends of dynamic microtubules and potentiates the minus-end blocking activity of ASPM. ASPM also binds along microtubules, recruits katanin and promotes katanin-mediated severing of dynamic microtubules. We propose that the ASPM-katanin complex controls microtubule disassembly at spindle poles and that misregulation of this process can lead to microcephaly.


Assuntos
Adenosina Trifosfatases/metabolismo , Microcefalia/metabolismo , Microtúbulos/enzimologia , Proteínas do Tecido Nervoso/metabolismo , Polos do Fuso/enzimologia , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Sistemas CRISPR-Cas , Células HEK293 , Células HeLa , Humanos , Katanina , Microcefalia/genética , Microcefalia/patologia , Microtúbulos/genética , Microtúbulos/patologia , Modelos Moleculares , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Polos do Fuso/genética , Polos do Fuso/patologia , Relação Estrutura-Atividade , Fatores de Tempo , Transfecção
8.
Structure ; 25(2): 219-230, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28065508

RESUMO

Picornaviruses are small positive-sense single-stranded RNA viruses that include many important human pathogens. Within the host cell, they replicate at specific replication sites called replication organelles. To create this membrane platform, they hijack several host factors including the acyl-CoA-binding domain-containing protein-3 (ACBD3). Here, we present a structural characterization of the molecular complexes formed by the non-structural 3A proteins from two species of the Kobuvirus genus of the Picornaviridae family and the 3A-binding domain of the host ACBD3 protein. Specifically, we present a series of crystal structures as well as a molecular dynamics simulation of the 3A:ACBD3 complex at the membrane, which reveals that the viral 3A proteins act as molecular harnesses to enslave the ACBD3 protein leading to its stabilization at target membranes. Our data provide a structural rationale for understanding how these viral-host protein complexes assemble at the atomic level and identify new potential targets for antiviral therapies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Interações Hospedeiro-Patógeno , Kobuvirus/genética , Proteínas de Membrana/química , Lipossomas Unilamelares/química , Proteínas não Estruturais Virais/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Linhagem Celular , Clonagem Molecular , Cristalografia por Raios X , Expressão Gênica , Humanos , Kobuvirus/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética
9.
J Biol Chem ; 291(35): 18496-504, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27402853

RESUMO

Dysfunction of cilia is associated with common genetic disorders termed ciliopathies. Knowledge on the interaction networks of ciliary proteins is therefore key for understanding the processes that are underlying these severe diseases and the mechanisms of ciliogenesis in general. Cep104 has recently been identified as a key player in the regulation of cilia formation. Using a combination of sequence analysis, biophysics, and x-ray crystallography, we obtained new insights into the domain architecture and interaction network of the Cep104 protein. We solved the crystal structure of the tumor overexpressed gene (TOG) domain, identified Cep104 as a novel tubulin-binding protein, and biophysically characterized the interaction of Cep104 with CP110, Cep97, end-binding (EB) protein, and tubulin. Our results represent a solid platform for the further investigation of the microtubule-EB-Cep104-tubulin-CP110-Cep97 network of proteins. Ultimately, such studies should be of importance for understanding the process of cilia formation and the mechanisms underlying different ciliopathies.


Assuntos
Proteínas Associadas aos Microtúbulos/química , Centríolos/química , Centríolos/genética , Centríolos/metabolismo , Cílios/química , Cílios/metabolismo , Ciliopatias/genética , Ciliopatias/metabolismo , Cristalografia por Raios X , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Domínios Proteicos
10.
Sci Rep ; 6: 23641, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27009356

RESUMO

Phosphatidylinositol 4-kinase beta (PI4KB) is one of four human PI4K enzymes that generate phosphatidylinositol 4-phosphate (PI4P), a minor but essential regulatory lipid found in all eukaryotic cells. To convert their lipid substrates, PI4Ks must be recruited to the correct membrane compartment. PI4KB is critical for the maintenance of the Golgi and trans Golgi network (TGN) PI4P pools, however, the actual targeting mechanism of PI4KB to the Golgi and TGN membranes is unknown. Here, we present an NMR structure of the complex of PI4KB and its interacting partner, Golgi adaptor protein acyl-coenzyme A binding domain containing protein 3 (ACBD3). We show that ACBD3 is capable of recruiting PI4KB to membranes both in vitro and in vivo, and that membrane recruitment of PI4KB by ACBD3 increases its enzymatic activity and that the ACBD3:PI4KB complex formation is essential for proper function of the Golgi.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Sítios de Ligação , Células COS , Chlorocebus aethiops , Complexo de Golgi/metabolismo , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Fosfatos de Fosfatidilinositol/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína
11.
J Biol Chem ; 289(35): 24463-74, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25037217

RESUMO

Apoptosis signal-regulating kinase 1 (ASK1), a mitogen-activated protein kinase kinase kinase, plays a key role in the pathogenesis of multiple diseases. Its activity is regulated by thioredoxin (TRX1) but the precise mechanism of this regulation is unclear due to the lack of structural data. Here, we performed biophysical and structural characterization of the TRX1-binding domain of ASK1 (ASK1-TBD) and its complex with reduced TRX1. ASK1-TBD is a monomeric and rigid domain that forms a stable complex with reduced TRX1 with 1:1 molar stoichiometry. The binding interaction does not involve the formation of intermolecular disulfide bonds. Residues from the catalytic WCGPC motif of TRX1 are essential for complex stability with Trp(31) being directly involved in the binding interaction as suggested by time-resolved fluorescence. Small-angle x-ray scattering data reveal a compact and slightly asymmetric shape of ASK1-TBD and suggest reduced TRX1 interacts with this domain through the large binding interface without inducing any dramatic conformational change.


Assuntos
MAP Quinase Quinase Quinase 5/metabolismo , Tiorredoxinas/metabolismo , Biofísica , Dicroísmo Circular , Oxirredução , Ligação Proteica , Conformação Proteica , Espectrometria de Fluorescência , Ultracentrifugação
12.
J Biol Chem ; 289(20): 13948-61, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24713696

RESUMO

Trehalases hydrolyze the non-reducing disaccharide trehalose amassed by cells as a universal protectant and storage carbohydrate. Recently, it has been shown that the activity of neutral trehalase Nth1 from Saccharomyces cerevisiae is mediated by the 14-3-3 protein binding that modulates the structure of both the catalytic domain and the region containing the EF-hand-like motif, whose role in the activation of Nth1 is unclear. In this work, the structure of the Nth1·14-3-3 complex and the importance of the EF-hand-like motif were investigated using site-directed mutagenesis, hydrogen/deuterium exchange coupled to mass spectrometry, chemical cross-linking, and small angle x-ray scattering. The low resolution structural views of Nth1 alone and the Nth1·14-3-3 complex show that the 14-3-3 protein binding induces a significant structural rearrangement of the whole Nth1 molecule. The EF-hand-like motif-containing region forms a separate domain that interacts with both the 14-3-3 protein and the catalytic trehalase domain. The structural integrity of the EF-hand like motif is essential for the 14-3-3 protein-mediated activation of Nth1, and calcium binding, although not required for the activation, facilitates this process by affecting its structure. Our data suggest that the EF-hand like motif-containing domain functions as the intermediary through which the 14-3-3 protein modulates the function of the catalytic domain of Nth1.


Assuntos
Motivos EF Hand , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Trealase/metabolismo , Proteínas 14-3-3/química , Proteínas 14-3-3/metabolismo , Sequência de Aminoácidos , Cálcio/metabolismo , Domínio Catalítico , Ativação Enzimática , Modelos Moleculares , Trealase/química
13.
Protein Sci ; 23(1): 88-99, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24282025

RESUMO

Lens γ crystallins are found at the highest protein concentration of any tissue, ranging from 300 mg/mL in some mammals to over 1000 mg/mL in fish. Such high concentrations are necessary for the refraction of light, but impose extreme requirements for protein stability and solubility. γ-crystallins, small stable monomeric proteins, are particularly associated with the lowest hydration regions of the lens. Here, we examine the solvation of selected γ-crystallins from mammals (human γD and mouse γS) and fish (zebrafish γM2b and γM7). The thermodynamic water binding coefficient B1 could be probed by sucrose expulsion, and the hydrodynamic hydration shell of tightly bound water was probed by translational diffusion and structure-based hydrodynamic boundary element modeling. While the amount of tightly bound water of human γD was consistent with that of average proteins, the water binding of mouse γS was found to be relatively low. γM2b and γM7 crystallins were found to exhibit extremely low degrees hydration, consistent with their role in the fish lens. γM crystallins have a very high methionine content, in some species up to 15%. Structure-based modeling of hydration in γM7 crystallin suggests low hydration is associated with the large number of surface methionine residues, likely in adaptation to the extremely high concentration and low hydration environment in fish lenses. Overall, the degree of hydration appears to balance stability and tissue density requirements required to produce and maintain the optical properties of the lens in different vertebrate species.


Assuntos
Cristalino/metabolismo , Proteínas de Peixe-Zebra/química , gama-Cristalinas/química , Animais , Proteínas do Olho/química , Proteínas do Olho/metabolismo , Humanos , Hidrodinâmica , Metionina/análise , Camundongos , Modelos Moleculares , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Solubilidade , Soluções , Termodinâmica , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo , gama-Cristalinas/metabolismo
14.
J Biol Chem ; 288(31): 22333-45, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23782691

RESUMO

Tooth enamel, the hardest tissue in the body, is formed by the evolutionarily highly conserved biomineralization process that is controlled by extracellular matrix proteins. The intrinsically disordered matrix protein ameloblastin (AMBN) is the most abundant nonamelogenin protein of the developing enamel and a key element for correct enamel formation. AMBN was suggested to be a cell adhesion molecule that regulates proliferation and differentiation of ameloblasts. Nevertheless, detailed structural and functional studies on AMBN have been substantially limited by the paucity of the purified nondegraded protein. With this study, we have developed a procedure for production of a highly purified form of recombinant human AMBN in quantities that allowed its structural characterization. Using size exclusion chromatography, analytical ultracentrifugation, transmission electron, and atomic force microscopy techniques, we show that AMBN self-associates into ribbon-like supramolecular structures with average widths and thicknesses of 18 and 0.34 nm, respectively. The AMBN ribbons exhibited lengths ranging from tens to hundreds of nm. Deletion analysis and NMR spectroscopy revealed that an N-terminal segment encoded by exon 5 comprises two short independently structured regions and plays a key role in self-assembly of AMBN.


Assuntos
Proteínas do Esmalte Dentário/metabolismo , Éxons , Cromatografia em Gel , Dicroísmo Circular , Proteínas do Esmalte Dentário/química , Proteínas do Esmalte Dentário/genética , Eletroforese em Gel de Poliacrilamida , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
Biophys J ; 103(9): 1960-9, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23199924

RESUMO

Phosducin (Pdc), a highly conserved phosphoprotein, plays an important role in the regulation of G protein signaling, transcriptional control, and modulation of blood pressure. Pdc is negatively regulated by phosphorylation followed by binding to the 14-3-3 protein, whose role is still unclear. To gain insight into the role of 14-3-3 in the regulation of Pdc function, we studied structural changes of Pdc induced by phosphorylation and 14-3-3 protein binding using time-resolved fluorescence spectroscopy. Our data show that the phosphorylation of the N-terminal domain of Pdc at Ser-54 and Ser-73 affects the structure of the whole Pdc molecule. Complex formation with 14-3-3 reduces the flexibility of both the N- and C-terminal domains of phosphorylated Pdc, as determined by time-resolved tryptophan and dansyl fluorescence. Therefore, our data suggest that phosphorylated Pdc undergoes a conformational change when binding to 14-3-3. These changes involve the G(t)ßγ binding surface within the N-terminal domain of Pdc, and thus could explain the inhibitory effect of 14-3-3 on Pdc function.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas do Olho/química , Reguladores de Proteínas de Ligação ao GTP/química , Fosfoproteínas/química , Sequência de Aminoácidos , Animais , Proteínas do Olho/metabolismo , Reguladores de Proteínas de Ligação ao GTP/metabolismo , Humanos , Dados de Sequência Molecular , Fosfatidilcolinas , Fosfoproteínas/metabolismo , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Serina/metabolismo , Espectrometria de Fluorescência , Triptofano
16.
Biochem J ; 443(3): 663-70, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22320399

RESUMO

Trehalases are important highly conserved enzymes found in a wide variety of organisms and are responsible for the hydrolysis of trehalose that serves as a carbon and energy source as well as a universal stress protectant. Emerging evidence indicates that the enzymatic activity of the neutral trehalase Nth1 in yeast is enhanced by 14-3-3 protein binding in a phosphorylation-dependent manner through an unknown mechanism. In the present study, we investigated in detail the interaction between Saccharomyces cerevisiae Nth1 and 14-3-3 protein isoforms Bmh1 and Bmh2. We determined four residues that are phosphorylated by PKA (protein kinase A) in vitro within the disordered N-terminal segment of Nth1. Sedimentation analysis and enzyme kinetics measurements show that both yeast 14-3-3 isoforms form a stable complex with phosphorylated Nth1 and significantly enhance its enzymatic activity. The 14-3-3-dependent activation of Nth1 is significantly more potent compared with Ca2+-dependent activation. Limited proteolysis confirmed that the 14-3-3 proteins interact with the N-terminal segment of Nth1 where all phosphorylation sites are located. Site-directed mutagenesis in conjunction with the enzyme activity measurements in vitro and the activation studies of mutant forms in vivo suggest that Ser60 and Ser83 are sites primarily responsible for PKA-dependent and 14-3-3-mediated activation of Nth1.


Assuntos
Proteínas 14-3-3/metabolismo , Saccharomyces cerevisiae/enzimologia , Trealase/metabolismo , Ativação Enzimática , Mutação , Fosforilação , Proteólise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Trealase/genética
17.
J Biol Chem ; 286(50): 43527-36, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22027839

RESUMO

Regulator of G protein signaling (RGS) proteins function as GTPase-activating proteins for the α-subunit of heterotrimeric G proteins. The function of certain RGS proteins is negatively regulated by 14-3-3 proteins, a family of highly conserved regulatory molecules expressed in all eukaryotes. In this study, we provide a structural mechanism for 14-3-3-dependent inhibition of RGS3-Gα interaction. We have used small angle x-ray scattering, hydrogen/deuterium exchange kinetics, and Förster resonance energy transfer measurements to determine the low-resolution solution structure of the 14-3-3ζ·RGS3 complex. The structure shows the RGS domain of RGS3 bound to the 14-3-3ζ dimer in an as-yet-unrecognized manner interacting with less conserved regions on the outer surface of the 14-3-3 dimer outside its central channel. Our results suggest that the 14-3-3 protein binding affects the structure of the Gα interaction portion of RGS3 as well as sterically blocks the interaction between the RGS domain and the Gα subunit of heterotrimeric G proteins.


Assuntos
Proteínas 14-3-3/química , Proteínas 14-3-3/metabolismo , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/metabolismo , Proteínas 14-3-3/genética , Dicroísmo Circular , Transferência Ressonante de Energia de Fluorescência , Proteínas de Ligação ao GTP/genética , Proteínas Ativadoras de GTPase/genética , Humanos , Espectrometria de Massas , Fosforilação , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas RGS , Espalhamento a Baixo Ângulo , Transdução de Sinais
18.
Acta Crystallogr D Biol Crystallogr ; 66(Pt 12): 1351-7, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21123876

RESUMO

FOXO4 is a member of the FOXO subgroup of forkhead transcription factors that constitute key components of a conserved signalling pathway that connects growth and stress signals to transcriptional control. Here, the 1.9 Šresolution crystal structure of the DNA-binding domain of human FOXO4 (FOXO4-DBD) bound to a 13 bp DNA duplex containing a FOXO consensus binding sequence is reported. The structure shows a similar recognition of the core sequence as has been shown for two other FOXO proteins. Helix H3 is docked into the major groove and provides all of the base-specific contacts, while the N-terminus and wing W1 make additional contacts with the phosphate groups of DNA. In contrast to other FOXO-DBD-DNA structures, the loop between helices H2 and H3 has a different conformation and participates in DNA binding. In addition, the structure of the FOXO4-DBD-DNA complex suggests that both direct water-DNA base contacts and the unique water-network interactions contribute to FOXO-DBD binding to the DNA in a sequence-specific manner.


Assuntos
DNA/química , Fatores de Transcrição/química , Sequência de Aminoácidos , Proteínas de Ciclo Celular , Cristalografia por Raios X , DNA/metabolismo , Fatores de Transcrição Forkhead , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia Estrutural de Proteína , Fatores de Transcrição/metabolismo
19.
Biochemistry ; 49(18): 3853-61, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20384366

RESUMO

Yeast 14-3-3 protein isoforms BMH1 and BMH2 possess a distinctly variant C-terminal tail which differentiates them from the isoforms of higher eukaryotes. Their C-termini are longer and contain a polyglutamine stretch of unknown function. It is now well established that the C-terminal segment of 14-3-3 proteins plays an important regulatory role by functioning as an autoinhibitor which occupies the ligand binding groove and blocks the binding of inappropriate ligands. Whether the same holds true or not for the yeast isoforms is unclear. Therefore, we investigated the conformational behavior of the C-terminal segment of BMH proteins using various biophysical techniques. Dynamic light scattering, sedimentation velocity, time-resolved fluorescence anisotropy decay, and size exclusion chromatography measurements showed that the molecules of BMH proteins are significantly larger compared to the human 14-3-3zeta isoform. On the other hand, the sedimentation analysis confirmed that BMH proteins form dimers. Time-resolved tryptophan fluorescence experiments revealed no dramatic structural changes of the C-terminal segment upon the ligand binding. Taken together, the C-terminal segment of BMH proteins adopts a widely opened and extended conformation that makes difficult its folding into the ligand binding groove, thus increasing the apparent molecular size. It seems, therefore, that the C-terminal segment of BMH proteins does not function as an autoinhibitor.


Assuntos
Proteínas 14-3-3/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Dimerização , Humanos , Dados de Sequência Molecular , Conformação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
20.
J Struct Biol ; 170(3): 451-61, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20347994

RESUMO

Regulator of G protein signaling (RGS) proteins function as GTPase-activating proteins (GAPs) for the alpha-subunit of heterotrimeric G proteins. Several RGS proteins have been found to interact with 14-3-3 proteins. The 14-3-3 protein binding inhibits the GAP function of RGS proteins presumably by blocking their interaction with G(alpha) subunit. Since RGS proteins interact with G(alpha) subunits through their RGS domains, it is reasonable to assume that the 14-3-3 protein can either sterically occlude the G(alpha) interaction surface of RGS domain and/or change its structure. In this work, we investigated whether the 14-3-3 protein binding affects the structure of RGS3 using the time-resolved tryptophan fluorescence spectroscopy. Two single-tryptophan mutants of RGS3 were used to study conformational changes of RGS3 molecule. Our measurements revealed that the 14-3-3 protein binding induces structural changes in both the N-terminal part and the C-terminal RGS domain of phosphorylated RGS3 molecule. Experiments with the isolated RGS domain of RGS3 suggest that this domain alone can, to some extent, interact with the 14-3-3 protein in a phosphorylation-independent manner. In addition, a crystal structure of the RGS domain of RGS3 was solved at 2.3A resolution. The data obtained from the resolution of the structure of the RGS domain suggest that the 14-3-3 protein-induced conformational change affects the region within the G(alpha)-interacting portion of the RGS domain. This can explain the inhibitory effect of the 14-3-3 protein on GAP activity of RGS3.


Assuntos
Proteínas 14-3-3/química , Proteínas 14-3-3/metabolismo , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , Proteínas de Ligação ao GTP/genética , Proteínas Ativadoras de GTPase/genética , Humanos , Técnicas In Vitro , Modelos Moleculares , Complexos Multiproteicos , Mutagênese Sítio-Dirigida , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas , Proteínas RGS , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Triptofano/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...