Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Lab Anal ; 37(11-12): e24941, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37431777

RESUMO

During 2019, the SARS-CoV-2 emerged from China, and during months, COVID-19 spread in many countries around the world. The expanding data about pathogenesis of this virus could elucidate the exact mechanism by which COVID-19 caused death in humans. One of the pathogenic mechanisms of this disease is coagulation. Coagulation disorders that affect both venous and arterial systems occur in patients with COVID-19. The possible mechanism involved in the coagulation could be excessive inflammation induced by SARS-CoV-2. However, it is not yet clear well how SARS-CoV-2 promotes coagulopathy. However, some factors, such as pulmonary endothelial cell damage and some anticoagulant system disorders, are assumed to have an important role. In this study, we assessed conducted studies about COVID-19-induced coagulopathy to obtain clearer vision of the wide range of manifestations and possible pathogenesis mechanisms.


Assuntos
Transtornos da Coagulação Sanguínea , COVID-19 , Tromboembolia , Humanos , COVID-19/complicações , SARS-CoV-2 , Transtornos da Coagulação Sanguínea/etiologia , Tromboembolia/etiologia , Inflamação/complicações , Anticoagulantes
2.
Osong Public Health Res Perspect ; 13(1): 15-23, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35255675

RESUMO

Microbial coinfections can increase the morbidity and mortality rates of viral respiratory diseases. Therefore, this study aimed to determine the pooled prevalence of fungal coinfections in coronavirus disease 2019 (COVID-19) patients. Web of Science, Medline, Scopus, and Embase were searched without language restrictions to identify the related research on COVID-19 patients with fungal coinfections from December 1, 2019, to December 30, 2020. A random-effects model was used for analysis. The sample size included 2,246 patients from 8 studies. The pooled prevalence of fungal coinfections was 12.60%. The frequency of fungal subtype coinfections was 3.71% for Aspergillus, 2.39% for Candida, and 0.39% for other. The World Health Organization's Regional Office for Europe and Regional Office for Southeast Asia had the highest (23.28%) and lowest (4.53%) estimated prevalence of fungal coinfection, respectively. Our findings showed a high prevalence of fungal coinfections in COVID-19 cases, which is a likely contributor to mortality in COVID-19 patients. Early identification of fungal pathogens in the laboratory for COVID-19 patients can lead to timely treatment and prevention of further damage by this hidden infection.

3.
Biomed Res Int ; 2021: 5313832, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485513

RESUMO

BACKGROUND: Coinfections have a potential role in increased morbidity and mortality rates during pandemics. Our investigation is aimed at evaluating the viral coinfection prevalence in COVID-19 patients. METHODS: We systematically searched scientific databases, including Medline, Scopus, WOS, and Embase, from December 1, 2019, to December 30, 2020. Preprint servers such as medRxiv were also scanned to find other related preprint papers. All types of studies evaluating the viral coinfection prevalence in COVID-19 patients were considered. We applied the random effects model to pool all of the related studies. RESULTS: Thirty-three studies including 10484 patients were identified. The viral coinfection estimated pooled prevalence was 12.58%; 95% CI: 7.31 to 18.96). Blood viruses (pooled prevalence: 12.48%; 95% CI: 8.57 to 16.93) had the most frequent viral coinfection, and respiratory viruses (pooled prevalence: 4.32%; 95% CI: 2.78 to 6.15) had less frequent viral coinfection. The herpesvirus pooled prevalence was 11.71% (95% CI: 3.02 to 24.80). Also, the maximum and minimum of viral coinfection pooled prevalence were in AMRO and EMRO with 15.63% (95% CI: 3.78 to 33.31) and 7.05% (95% CI: 3.84 to 11.07), respectively. CONCLUSION: The lowest rate of coinfection belonged to respiratory viruses. Blood-borne viruses had the highest coinfection rate. Our results provide important data about the prevalence of blood-borne viruses among COVID-19 patients which can be critical when it comes to their treatment procedure.


Assuntos
COVID-19/epidemiologia , Coinfecção/epidemiologia , Coinfecção/virologia , Humanos , Pandemias/prevenção & controle , Prevalência , SARS-CoV-2/patogenicidade , Viroses/epidemiologia , Viroses/virologia , Vírus/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...