Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurotoxicology ; 90: 184-196, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35395329

RESUMO

Despite advances in research on the vaccine and therapeutic strategies of COVID-19, little attention has been paid to the possible (eco)toxicological impacts of the dispersion of SARS-CoV-2 particles in natural environments. Thus, in this study, we aimed to evaluate the behavioral and biochemical consequences of the short exposure of outbred and inbred mice (male Swiss and C57Bl/6 J mice, respectively) to PSPD-2002 (peptide fragments of the Spike protein of SARS-CoV-2) synthesized in the laboratory. Our data demonstrated that after 24 h of intraperitoneal administration of PSPD-2002 (at 580 µg/kg) the animals did not present alterations in their locomotor, anxiolytic-like, or anxiety-like behavior (in the open field test), nor antidepressant-like or depressive behavior in the forced swimming test. However, the C57Bl/6 J mice exposed to PSPD-2002 showed memory deficit in the novel object recognition task, which was associated with higher production of thiobarbituric acid reactive substances, as well as the increased suppression of acetylcholinesterase brain activity, compared to Swiss mice also exposed to peptide fragments. In Swiss mice the reduction in the activity of superoxide dismutase and catalase in the brain was not associated with increased oxidative stress biomarkers (hydrogen peroxide), suggesting that other antioxidant mechanisms may have been activated by exposure to PSPD-2002 to maintain the animals' brain redox homeostasis. Finally, the results of all biomarkers evaluated were applied into the "Integrated Biomarker Response Index" (IBRv2) and the principal component analysis (PCA), and greater sensitivity of C57Bl/6 J mice to PSPD-2002 was revealed. Therefore, our study provides pioneering evidence of mammalian exposure-induced toxicity (non-target SARS-CoV-2 infection) to PSPD-2002, as well as "sheds light" on the influence of genetic profile on susceptibility/resistance to the effects of viral peptide fragments.


Assuntos
COVID-19 , SARS-CoV-2 , Acetilcolinesterase , Animais , Biomarcadores , Masculino , Mamíferos , Camundongos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos , Peptídeos
2.
Aquat Toxicol ; 245: 106104, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35176694

RESUMO

There have been significant impacts of the current COVID-19 pandemic on society including high health and economic costs. However, little is known about the potential ecological risks of this virus despite its presence in freshwater systems. In this study, we aimed to evaluate the exposure of Poecilia reticulata juveniles to two peptides derived from Spike protein of SARS-CoV-2, which was synthesized in the laboratory (named PSPD-2002 and PSPD-2003). For this, the animals were exposed for 35 days to the peptides at a concentration of 40 µg/L and different toxicity biomarkers were assessed. Our data indicated that the peptides were able to induce anxiety-like behavior in the open field test and increased acetylcholinesterase (AChE) activity. The biometric evaluation also revealed that the animals exposed to the peptides displayed alterations in the pattern of growth/development. Furthermore, the increased activity of superoxide dismutase (SOD) and catalase (CAT) enzymes were accompanied by increased levels of malondialdehyde (MDA), reactive oxygen species (ROS) and hydrogen peroxide (H2O2), which suggests a redox imbalance induced by SARS-CoV-2 spike protein peptides. Moreover, molecular docking analysis suggested a strong interaction of the peptides with the enzymes AChE, SOD and CAT, allowing us to infer that the observed effects are related to the direct action of the peptides on the functionality of these enzymes. Consequently, our study provided evidence that the presence of SARS-CoV-2 viral particles in the freshwater ecosystems offer a health risk to fish and other aquatic organisms.


Assuntos
COVID-19 , Poecilia , Poluentes Químicos da Água , Acetilcolinesterase/metabolismo , Animais , Catalase/metabolismo , Ecossistema , Humanos , Peróxido de Hidrogênio , Simulação de Acoplamento Molecular , Pandemias , Poecilia/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...