Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Open Biol ; 13(6): 230090, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37369351

RESUMO

The neuropeptide pigment-dispersing factor (PDF) plays a pivotal role in the circadian clock of most Ecdysozoa and is additionally involved in the timing of seasonal responses of several photoperiodic species. The pea aphid, Acyrthosiphon pisum, is a paradigmatic photoperiodic species with an annual life cycle tightly coupled to the seasonal changes in day length. Nevertheless, PDF could not be identified in A. pisum so far. In the present study, we identified a PDF-coding gene that has undergone significant changes in the otherwise highly conserved insect C-terminal amino acid sequence. A newly generated aphid-specific PDF antibody stained four neurons in each hemisphere of the aphid brain that co-express the clock protein Period and have projections to the pars lateralis that are highly plastic and change their appearance in a daily and seasonal manner, resembling those of the fruit fly PDF neurons. Most intriguingly, the PDF terminals overlap with dendrites of the insulin-like peptide (ILP) positive neurosecretory cells in the pars intercerebralis and with putative terminals of Cryptochrome (CRY) positive clock neurons. Since ILP has been previously shown to be crucial for seasonal adaptations and CRY might serve as a circadian photoreceptor vital for measuring day length, our results suggest that PDF plays a critical role in aphid seasonal timing.


Assuntos
Afídeos , Relógios Circadianos , Insulinas , Animais , Afídeos/genética , Afídeos/metabolismo , Ritmo Circadiano/genética , Drosophila/fisiologia , Fibrinogênio/metabolismo , Insulinas/metabolismo , Neurônios/metabolismo , Pisum sativum/metabolismo , Peptídeos/metabolismo
2.
PLoS One ; 17(5): e0267986, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35522627

RESUMO

The role of phagocytes of children with cystic fibrosis (CF) associated with different phenotypes of chronic rhinosinusitis (CRS) is unclear. The aim of this study was to evaluate the phagocytic capacity of blood neutrophils and monocytes and production of superoxide anion by phagocytes in patients with CF with or without chronic rhinosinusitis and with or without nasal polyps (NP). This cross-sectional study was established in 2015-2017 in a tertiary reference center to the CF treatment, Brasilia, Brazil. Sample included 30 children volunteers with CRS related to CF (n = 16) and control subjects (n = 14). Epidemiological and clinical data were compared. Collection of 15 mL of peripheral blood and nasal endoscopy to identify the presence or absence of nasal polyps (NP) were performed. Phagocytosis of Saccharomyces cerevisiae by pathogen-associated molecular pattern receptors and opsonin receptors was assessed. Superoxide anion production was evaluated. The control group showed a higher phagocytic index to monocytes and neutrophils than to the CF or CF+CRS with NP groups [Kruskal-Wallis p = 0.0025] when phagocytosis were evaluated by pathogen-associated molecular pattern receptors (5 yeasts/cell). The phagocytic index of the CF+CRS without NP group was higher than in the CF+CRS with NP group (Kruskal-Wallis p = 0.0168). In the control group, the percentage of phagocytes involved in phagocytosis and superoxide anion production (74.0 ± 9.6%) were higher in all CF groups (p < 0,0001). The innate immune response, represented by phagocytic activity and superoxide anion production by monocytes and neutrophils was more impaired in patients with CF related or not related to CRS than in the control group. However, the phagocytic function of patients without NP showed less impairment.


Assuntos
Fibrose Cística , Pólipos Nasais , Rinite , Sinusite , Doença Crônica , Estudos Transversais , Fibrose Cística/genética , Humanos , Imunidade Inata , Pólipos Nasais/complicações , Moléculas com Motivos Associados a Patógenos , Sinusite/genética , Superóxidos
3.
J Exp Zool B Mol Dev Evol ; 336(8): 606-619, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-32649025

RESUMO

Land colonization was a major event in the history of life. Among animals, insects exerted a staggering terrestrialization success, due to traits usually associated with postembryonic life stages, while the egg stage has been largely overlooked in comparative studies. In many insects, after blastoderm differentiation, the extraembryonic serosal tissue wraps the embryo and synthesizes the serosal cuticle, an extracellular matrix that lies beneath the eggshell and protects the egg against water loss. In contrast, in noninsect hexapods such as springtails (Collembola) the early blastodermal cells synthesize a blastodermal cuticle. Here, we investigate the relationship between blastodermal cuticle formation and egg resistance to desiccation in the springtails Orchesella cincta and Folsomia candida, two species with different oviposition environments and developmental rates. The blastodermal cuticle becomes externally visible in O. cincta and F. candida at 22% and 29% of embryogenesis, respectively. To contextualize, we describe the stages of springtail embryogenesis, exemplified by F. candida. Our physiological assays then showed that blastodermal cuticle formation coincides with an increase in egg viability in a dry environment, significantly contributing to hatching success. However, protection differs between species: while O. cincta eggs survive at least 2 hr outside a humid environment, the survival period recorded for F. candida eggs is only 15 min, which correlates with this species' requirement for humid microhabitats. We suggest that the formation of this cuticle protects the eggs, constituting an ancestral trait among hexapods that predated and facilitated the process of terrestrialization that occurred during insect evolution.


Assuntos
Artrópodes , Blastoderma , Óvulo , Animais , Dessecação , Feminino , Oviposição , Óvulo/fisiologia
4.
PLoS Negl Trop Dis ; 11(10): e0006063, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29084225

RESUMO

Mosquito vectors lay their white eggs in the aquatic milieu. During early embryogenesis water passes freely through the transparent eggshell, which at this moment is composed of exochorion and endochorion. Within two hours the endochorion darkens via melanization but even so eggs shrink and perish if removed from moisture. However, during mid-embryogenesis, cells of the extraembryonic serosa secrete the serosal cuticle, localized right below the endochorion, becoming the third and innermost eggshell layer. Serosal cuticle formation greatly reduces water flow and allows egg survival outside the water. The degree of egg resistance to desiccation (ERD) at late embryogenesis varies among different species: Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus eggs can survive in a dry environment for ≥ 72, 24 and 5 hours, respectively. In some adult insects, darker-body individuals show greater resistance to desiccation than lighter ones. We asked if egg melanization enhances mosquito serosal cuticle-dependent ERD. Species with higher ERD at late embryogenesis exhibit more melanized eggshells. The melanization-ERD hypothesis was confirmed employing two Anopheles quadrimaculatus strains, the wild type and the mutant GORO, with a dark-brown and a golden eggshell, respectively. In all cases, serosal cuticle formation is fundamental for the establishment of an efficient ERD but egg viability outside the water is much higher in mosquitoes with darker eggshells than in those with lighter ones. The finding that pigmentation influences egg water balance is relevant to understand the evolutionary history of insect egg coloration. Since eggshell and adult cuticle pigmentation ensure insect survivorship in some cases, they should be considered regarding species fitness and novel approaches for vector or pest insects control.


Assuntos
Aedes/metabolismo , Anopheles/metabolismo , Culex/metabolismo , Melaninas/metabolismo , Óvulo/química , Óvulo/metabolismo , Animais , Cor , Dessecação , Feminino , Água/análise , Água/metabolismo
5.
J Exp Zool B Mol Dev Evol ; 328(1-2): 5-40, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27491339

RESUMO

Famous for its blind cavefish and Darwin's finches, Latin America is home to some of the richest biodiversity hotspots of our planet. The Latin American fauna and flora inspired and captivated naturalists from the nineteenth and twentieth centuries, including such notable pioneers such as Fritz Müller, Florentino Ameghino, and Léon Croizat who made a significant contribution to the study of embryology and evolutionary thinking. But, what are the historical and present contributions of the Latin American scientific community to Evo-Devo? Here, we provide the first comprehensive overview of the Evo-Devo laboratories based in Latin America and describe current lines of research based on endemic species, focusing on body plans and patterning, systematics, physiology, computational modeling approaches, ecology, and domestication. Literature searches reveal that Evo-Devo in Latin America is still in its early days; while showing encouraging indicators of productivity, it has not stabilized yet, because it relies on few and sparsely distributed laboratories. Coping with the rapid changes in national scientific policies and contributing to solve social and health issues specific to each region are among the main challenges faced by Latin American researchers. The 2015 inaugural meeting of the Pan-American Society for Evolutionary Developmental Biology played a pivotal role in bringing together Latin American researchers eager to initiate and consolidate regional and worldwide collaborative networks. Such networks will undoubtedly advance research on the extremely high genetic and phenotypic biodiversity of Latin America, bound to be an almost infinite source of amazement and fascinating findings for the Evo-Devo community.


Assuntos
Evolução Biológica , Biologia do Desenvolvimento , Pesquisa , Animais , América Latina
6.
Proc Biol Sci ; 280(1764): 20131082, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23782888

RESUMO

Insects have been extraordinarily successful in occupying terrestrial habitats, in contrast to their mostly aquatic sister group, the crustaceans. This success is typically attributed to adult traits such as flight, whereas little attention has been paid to adaptation of the egg. An evolutionary novelty of insect eggs is the serosa, an extraembryonic membrane that enfolds the embryo and secretes a cuticle. To experimentally test the protective function of the serosa, we exploit an exceptional possibility to eliminate this membrane by zerknüllt1 RNAi in the beetle Tribolium castaneum. We analyse hatching rates of eggs under a range of humidities and find dramatically decreasing hatching rates with decreasing humidities for serosa-less eggs, but not for control eggs. Furthermore, we show serosal expression of Tc-chitin-synthase1 and demonstrate that its knock-down leads to absence of the serosal cuticle and a reduction in hatching rates at low humidities. These developmental genetic techniques in combination with ecological testing provide experimental evidence for a crucial role of the serosa in desiccation resistance. We propose that the origin of this extraembryonic membrane facilitated the spectacular radiation of insects on land, as did the origin of the amniote egg in the terrestrial invasion of vertebrates.


Assuntos
Embrião não Mamífero/anatomia & histologia , Membrana Serosa/embriologia , Tribolium/embriologia , Animais , Evolução Biológica , Quitina Sintase/genética , Desidratação , Embrião não Mamífero/citologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Insetos/embriologia , Óvulo/citologia , Interferência de RNA , Tribolium/genética
7.
PLoS One ; 7(1): e30363, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22291942

RESUMO

Population control of the dengue vector mosquito, Aedes aegypti, is difficult due to many reasons, one being the development of resistance to neurotoxic insecticides employed. The biosynthesis of chitin, a major constituent of insect cuticle, is a novel target for population control. Novaluron is a benzoylphenylurea (BPU) that acts as a chitin synthesis inhibitor, already used against mosquitoes. However, information regarding BPU effects on immature mosquito stages and physiological parameters related with mosquito larval development are scarce. A set of physiological parameters were recorded in control developing larvae and novaluron was administered continuously to Ae. aegypti larvae, since early third instar. Larval instar period duration was recorded from third instar until pupation. Chitin content was measured during third and fourth instars. Fourth instars were processed histochemically at the mesothorax region, stained with hematoxylin and eosin (HE) for assessment of internal tissues, and labeled with WGA-FITC to reveal chitinized structures. In control larvae: i) there is a chitin content increase during both third and fourth instars where late third instars contain more chitin than early fourth instars; ii) thoracic organs and a continuous cuticle, closely associated with the underlying epidermis were observed; iii) chitin was continuously present throughout integument cuticle. Novaluron treatment inhibited adult emergence, induced immature mortality, altered adult sex ratio and caused delay in larval development. Moreover, novaluron: i) significantly affected chitin content during larval development; ii) induced a discontinuous and altered cuticle in some regions while epidermis was often thinner or missing; iii) rendered chitin cuticle presence discontinuous and less evident. In both control and novaluron larvae, chitin was present in the peritrophic matrix. This study showed quantitatively and qualitatively evidences of novaluron effects on Ae. aegypti larval development. To our knowledge, this is the first report describing histological alterations produced by a BPU in immature vector mosquitoes.


Assuntos
Aedes/efeitos dos fármacos , Aedes/crescimento & desenvolvimento , Quitina/metabolismo , Compostos de Fenilureia/farmacologia , Aedes/anatomia & histologia , Aedes/fisiologia , Fatores Etários , Animais , Quitina/análise , Quitina Sintase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Feminino , Inseticidas/farmacologia , Larva/anatomia & histologia , Larva/química , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Masculino , Controle de Mosquitos , Razão de Masculinidade , Temperatura
8.
Dev Biol ; 330(2): 462-70, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19298808

RESUMO

During the evolution of the Diptera there is a dramatic modification of the embryonic ectoderm, whereby mosquitoes contain separate amnion and serosa lineages while higher flies such as Drosophila melanogaster contain a single amnioserosa. Whole-genome transcriptome assays were performed with isolated serosa from Anopheles gambiae embryos. These assays identified a large number of genes implicated in the production of the larval cuticle. In D. melanogaster, these genes are activated just once during embryogenesis, during late stages where they are used for the production of the larval cuticle. Evidence is presented that the serosal cells secrete a dedicated serosal cuticle, which protects A. gambiae embryos from desiccation. Detailed temporal microarray assays of mosquito gene expression profiles revealed that the cuticular genes display biphasic expression during A. gambiae embryogenesis, first in the serosa of early embryos and then again during late stages as seen in D. melanogaster. We discuss how evolutionary modifications in the well-defined dorsal-ventral patterning network led to the wholesale deployment of the cuticle biosynthesis pathway in early embryos of A. gambiae.


Assuntos
Adaptação Fisiológica/genética , Anopheles/embriologia , Evolução Biológica , Secas , Animais , Anopheles/genética , Anopheles/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...