Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 895: 165189, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37391131

RESUMO

Uptake and transformation of arsenic (As) by living organisms can alter its distribution and biogeochemical cycles in the environment. Although well known for its toxicity, several aspects of As accumulation and biological transformation by field species are still little explored. In this study, the bioaccumulation and speciation of As in phytoplankton and zooplankton from five soda lakes in the Brazilian Pantanal wetland were studied. Such lakes exhibited contrasting biogeochemical characteristics along an environmental gradient. Additionally, the influence of contrasting climatic events was assessed by collecting samples during an exceptional drought in 2017 and a flood in 2018. Total As (AsTot) content and speciation were determined using spectrometric techniques, while a suspect screening of organoarsenicals in plankton samples was carried out by high-resolution mass spectrometry. Results showed that AsTot content ranged from 16.9 to 62.0 mg kg-1 during the dry period and from 2.4 to 12.3 mg kg-1 during the wet period. The bioconcentration and bioaccumulation factors (BCF and BAF) in phytoplankton and zooplankton were found to be highly dependent on the lake typology, which is influenced by an ongoing evapoconcentration process in the region. Eutrophic and As-enriched lakes exhibited the lowest BCF and BAF values, possibly due to the formation of non-labile As complexes with organic matter or limited uptake of As by plankton caused by high salinity stress. The season played a decisive role in the results, as significantly higher BCF and BAF values were observed during the flooding event when the concentration of dissolved As in water was low. The diversity of As species was found to be dependent on the lake typology and on the resident biological community, cyanobacteria being responsible for a significant portion of As metabolism. Arsenosugars and their degradation products were detected in both phytoplankton and zooplankton, providing evidence for previously reported detoxification pathways. Although no biomagnification pattern was observed, the diet seemed to be an important exposure pathway for zooplankton.


Assuntos
Arsênio , Plâncton , Animais , Plâncton/química , Lagos/química , Arsênio/metabolismo , Bioacumulação , Salinidade , Zooplâncton/metabolismo , Fitoplâncton/metabolismo
2.
Microb Ecol ; 85(3): 892-903, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35916937

RESUMO

Soda lake environments are known to be variable and can have distinct differences according to geographical location. In this study, we investigated the effects of different environmental conditions of six adjacent soda lakes in the Pantanal biome (Mato Grosso do Sul state, Brazil) on bacterial communities and their functioning using a metagenomic approach combined with flow cytometry and chemical analyses. Ordination analysis using flow cytometry and water chemistry data from two sampling periods (wet and dry) clustered soda lakes into three different profiles: eutrophic turbid (ET), oligotrophic turbid (OT), and clear vegetated oligotrophic (CVO). Analysis of bacterial community composition and functioning corroborated this ordination; the exception was one ET lake, which was similar to one OT lake during the wet season, indicating drastic shifts between seasons. Microbial abundance and diversity increased during the dry period, along with a considerable number of limnological variables, all indicative of a strong effect of the precipitation-evaporation balance in these systems. Cyanobacteria were associated with high electric conductivity, pH, and nutrient availability, whereas Actinobacteria, Alphaproteobacteria, and Betaproteobacteria were correlated with landscape morphology variability (surface water, surface perimeter, and lake volume) and with lower salinity and pH levels. Stress response metabolism was enhanced in OT and ET lakes and underrepresented in CVO lakes. The microbiome dataset of this study can serve as a baseline for restoring impacted soda lakes. Altogether, the results of this study demonstrate the sensitivity of tropical soda lakes to climate change, as slight changes in hydrological regimes might produce drastic shifts in community diversity.


Assuntos
Cianobactérias , Lagos , Lagos/química , Lagos/microbiologia , Brasil , Eutrofização , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/isolamento & purificação , Metagenômica
3.
Sci Total Environ ; 687: 917-928, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31412495

RESUMO

Although high levels of dissolved arsenic were detected in surface and ground waters of Nhecolândia, a sub-region of the vast Pantanal wetlands in Brazil, the possible sources have not been clearly identified and the potential release from the wetland to the draining rivers has not been investigated. In this study we measured the dissolved As content in all the rivers and small streams that supply the southern Pantanal region, as well as in the two main rivers draining the wetland, i.e., the Cuiaba and Paraguay rivers and tributaries. In addition, Arsenic in surface waters, perched water-table, soils and sediments from 3 experimental sites located in the heart of Nhecolândia were compared. On the one hand, the results show the absence of As contamination in rivers that supply the Pantanal floodplain, as well as a lack of significant release from the floodplain to the main drains. The As contents in the rivers are <2 µg L-1, with variations that depend on the lithology and on the geomorphology at the collection point (uplands or floodplain). On the other hand, they confirm the regional extension of As contamination in Nhecolândia's alkaline waters with some values above 3 mg L-1. Arsenic is mainly in the arsenate form, and increases with the evaporation process estimated from sodium ion concentrations. The pH of soil solution and surface water increases rapidly during evapo-concentration up to values above 9 or 10, preventing adsorption processes on oxides and clay minerals and promoting the retention of dissolved arsenic in solution. Solutions from organic soil horizons show higher As contents in relation to Na, attributed to the formation of ternary complex As-(Fe/Al)-OM. In this alkaline pH range, despite high levels of dissolved As, soil horizons and lake sediments in contact with these waters show As values that correspond to uncontaminated environments.

4.
Front Microbiol ; 9: 244, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29520256

RESUMO

Soda lakes have high levels of sodium carbonates and are characterized by salinity and elevated pH. These ecosystems are found across Africa, Europe, Asia, Australia, North, Central, and South America. Particularly in Brazil, the Pantanal region has a series of hundreds of shallow soda lakes (ca. 600) potentially colonized by a diverse haloalkaliphilic microbial community. Biological information of these systems is still elusive, in particular data on the description of the main taxa involved in the biogeochemical cycling of life-important elements. Here, we used metagenomic sequencing to contrast the composition and functional patterns of the microbial communities of two distinct soda lakes from the sub-region Nhecolândia, state of Mato Grosso do Sul, Brazil. These two lakes differ by permanent cyanobacterial blooms (Salina Verde, green-water lake) and by no record of cyanobacterial blooms (Salina Preta, black-water lake). The dominant bacterial species in the Salina Verde bloom was Anabaenopsis elenkinii. This cyanobacterium altered local abiotic parameters such as pH, turbidity, and dissolved oxygen and consequently the overall structure of the microbial community. In Salina Preta, the microbial community had a more structured taxonomic profile. Therefore, the distribution of metabolic functions in Salina Preta community encompassed a large number of taxa, whereas, in Salina Verde, the functional potential was restrained across a specific set of taxa. Distinct signatures in the abundance of genes associated with the cycling of carbon, nitrogen, and sulfur were found. Interestingly, genes linked to arsenic resistance metabolism were present at higher abundance in Salina Verde and they were associated with the cyanobacterial bloom. Collectively, this study advances fundamental knowledge on the composition and genetic potential of microbial communities inhabiting tropical soda lakes.

5.
PLoS One ; 11(7): e0159972, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27463379

RESUMO

Recent studies have focused on the formation of authigenic clays in an alkaline soil system surrounding lakes of the Nhecolândia region, Pantanal wetland. The presence of trioctahedral Mg-smectites (stevensite and saponite types), which requires low Al and Fe contents in the soil solution for its formation, contrasts with the neoformation of dioctahedral Fe-mica (glauconite, and Fe-illite), which instead requires solutions relatively enriched in Al and Fe. This study aims to understand the conditions of co-existence of both, Mg-smectite and Fe-mica a common clay association in former or modern alkaline soil systems and sediments. The study was carried out along an alkaline soil catena representative of the region. The soil organization revealed that Mg-smectite occur in top soil close to the lake, whereas Fe-mica dominate in the clay fraction of deeper greenish horizons a few meters apart. We propose here that this spatial distribution is controlled by the lateral transfer of Fe and Al with organic ligands. Alkaline organic rich solutions (DOC up to 738 mg L-1) collected in the watertable were centrifuged and filtered through membranes of decreasing pore size (0.45 µm, 0.2 µm, 30 KDa, 10 KDa, 3 KDa) to separate colloidal and dissolved fractions. Fe, Al, Si, Mg and K were analysed for each fraction. Although the filtration had no influence on Si and K contents, almost 90% of Fe (up to 2.3 mg L-1) and Al (up to 7 mg L-1) are retained at the first cutoff threshold of 0.45µm. The treatment of the same solutions by oxygen peroxide before filtration shows that a large proportion of Fe and Al were bonded to organic colloids in alkaline soil solution at the immediate lake border, allowing Mg-smectite precipitation. The fast mineralization of the organic matter a few meters apart from the lake favors the release of Fe and Al necessary for Fe-mica neoformation. In comparison with chemical and mineralogical characteristics of alkaline environments described in the literature, the study suggests that the co-existence of trioctahedral Mg-smectite and dioctahedral Fe-mica should be regarded as a standard occurrence in alkaline soil systems with organic rich waters.


Assuntos
Silicatos de Alumínio/química , Sedimentos Geológicos/química , Solo/química , Áreas Alagadas , Álcalis/análise , Brasil , Argila , Metais/análise
6.
J Environ Qual ; 44(6): 1832-42, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26641335

RESUMO

Located in the Upper Paraguay River Basin (UPRB), the Pantanal is considered the world's largest wetland, being rather pristine although increasingly threatened by development programs. The main objective of this paper is to provide a baseline of water chemistry for this region, which is largely unknown as a result of poor accessibility. We used two datasets (70 and 122 water samples) collected in the Pantanal floodplain and surrounding uplands during the wet season occurring from November to March. From the major-ion mineral chemistry, dissolved silica, pH, electrical conductivity (EC), and the ionic forms of N, principal components analysis (PCA) treatments were used to identify and rank the main factors of variability and decipher the associated processes affecting the water chemistry. The results revealed that the water mineral concentration was a major factor of variability and it must be attributed first to lithology and second to agricultural inputs from extensive crop cultivation areas that mainly affects sulfate (SO) concentration on the eastern edge of the Pantanal. These processes influence the floodplain, where (i) the mixing of waters remains the main process, (ii) the weight of the biological and redox processes increased, and (iii) the chemical signature of the extensive cropping is transferred along the São Lourenço Basin down to its confluence with the Cuiaba River. Optimized parameters based on projections in the main factorial score plots were used for the mapping of lithological and agricultural impacts on water chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...