Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39124944

RESUMO

The aim of this work was to determine the changes in the chemical and physical-mechanical properties of gauze compresses under the influence of various sterilizations. Gauze compresses are made of cotton; therefore, all methods used focused on cotton. The methods used to test possible damage to cotton materials (pH value (pH paper, KI starch paper), yellowing test, Fehling reaction, reaction to the formation of Turnbull blue (Berlin blue), microscopic staining with methylene blue and swelling reaction with Na-zincate) did not show that the sterilizations affected the cotton compresses. The morphological characteristics were examined with a scanning electron microscope (SEM). The SEM images showed that there were no morphological changes in the cotton fibers. FTIR-ATR spectroscopy revealed that the sterilization processes did not alter the characteristic bands of the cotton. The length of the macromolecules was increased (DP), showing that the sterilization processes had affected the cotton. The results of the wet strength test followed. The samples showed values below 100%, with the exception of two samples. It is known from theory that the relative wet strength is less than 100% when the material is damaged. The t-test performed on the strength results showed that the p-value was greater than 0.05 for all samples tested, with the exception of one sample. The degree of swelling capacity was determined, with non-sterilized samples having the highest capacity, followed by samples sterilized with ethylene oxide and then samples sterilized by steam sterilization. The results obtained are a contribution to the innovation of the topic of this work and a scientific confirmation for manufacturers and anyone interested in the influence of the sterilization process on natural fibers (cotton).

2.
Polymers (Basel) ; 16(16)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39204538

RESUMO

The design and optimization of antimicrobial materials (polymers, biomolecules, or nanocomposites) can be significantly advanced by computational methodologies like molecular dynamics (MD), which provide insights into the interactions and stability of the antimicrobial agents within the polymer matrix, and machine learning (ML) or design of experiment (DOE), which predicts and optimizes antimicrobial efficacy and material properties. These innovations not only enhance the efficiency of developing antimicrobial polymers but also enable the creation of materials with tailored properties to meet specific application needs, ensuring safety and longevity in their usage. Therefore, this paper will present the computational methodologies employed in the synthesis and application of antimicrobial polymers, biomolecules, and nanocomposites. By leveraging advanced computational techniques such as MD, ML, or DOE, significant advancements in the design and optimization of antimicrobial materials are achieved. A comprehensive review on recent progress, together with highlights of the most relevant methodologies' contributions to state-of-the-art materials science will be discussed, as well as future directions in the field will be foreseen. Finally, future possibilities and opportunities will be derived from the current state-of-the-art methodologies, providing perspectives on the potential evolution of polymer science and engineering of novel materials.

3.
Polymers (Basel) ; 16(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39065318

RESUMO

The aim of this study was to prepare and characterize thin hybrid films on polyurethane-coated knitted fabrics and to achieve satisfactory color fastness to artificial light. Sol-gel-derived hybrid thin films were deposited via the dip-coating of 3-glycidoxypropiltrimethoxysilane. Titanium dioxide (TiO2) and zinc oxide (ZnO) nanopowders were added to compensate for the insufficient aging resistance, which manifests itself in low color fastness and is one of the most frequent complaints from manufacturers of coated marine fabrics (yachts, boats, etc.). The optimum processing conditions were determined by varying the concentration of precursors and auxiliaries, the mass concentration of TiO2 and ZnO nanopowders, the drawing speed, and the methods and process of fabric treatment. The hybrid films were also characterized using scanning electron microscopy and Fourier transform infrared spectroscopy with attenuated total internal reflection, while Spectraflash SF 300 investigated color fastness. After 300 h of exposure in a xenon chamber, the thin hybrid films showed good color fastness and good resistance to washing cycles. The sol-gel treatment proved to be a successful answer to the manufacturers' need for the post-treatment of polyurethane-coated knitted fabrics against UV radiation for use in the marine sector (yachts, speedboats, etc.).

4.
Polymers (Basel) ; 16(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38794503

RESUMO

The green transition in the sustainable production and processing of polymers poses multifaceted challenges that demand integral comprehensive solutions. Specific problems of presences of toxic trace elements are often missed and this prevents shifting towards eco-friendly alternatives. Therefore, substantial research and the development of novel approaches is needed to discover and implement innovative, sustainable production materials and methods. This paper is focused on the most vital problems of the green transition from the aspect of establishing universally accepted criteria for the characterization and classification of eco-friendly polymers, which is essential to ensuring transparency and trust among consumers. Additionally, the recycling infrastructure needs substantial improvement to manage the end-of-life stage of polymer products effectively. Moreover, the lack of standardized regulations and certifications for sustainable polymers adds to the complexity of this problem. In this paper we propose solutions from the aspect of standardization protocols for the characterization of polymers foreseen as materials that should be used in Zero Energy Innovations in Hydrogen Storage. The role model standards originate from eco-labeling procedures for materials that come into direct or prolonged contact with human skin, and that are monitored by different methods and testing procedures. In conclusion, the challenges of transitioning to green practices in polymer production and processing demands a concerted effort from experts in the field which need to emphasize the problems of the analysis of toxic ultra trace and trace impurities in samples that will be used in hydrogen storage, as trace impurities may cause terrific obstacles due to their decreasing the safety of materials. Overcoming these obstacles requires the development and application of current state-of-the-art methodologies for monitoring the quality of polymers during their recycling, processing, and using, as well as the development of other technological innovations, financial initiatives, and a collective commitment to fostering a sustainable and environmentally responsible future for the polymer industry and innovations in the field of zero energy applications.

5.
Appl Microbiol Biotechnol ; 108(1): 62, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38183486

RESUMO

In this work the green synthesis of gold nanoparticles (Au-NPs) using the oxidoreductive enzymes Myriococcum thermophilum cellobiose dehydrogenase (Mt CDH), Glomerella cingulata glucose dehydrogenase (Gc GDH), and Aspergillus niger glucose oxidase (An GOX)) as bioreductants was investigated. The influence of reaction conditions on the synthesis of Au-NPs was examined and optimised. The reaction kinetics and the influence of Au ions on the reaction rate were determined. Based on the kinetic study, the mechanism of Au-NP synthesis was proposed. The Au-NPs were characterized by UV-Vis spectroscopy and transmission electron microscopy (TEM). The surface plasmon resonance (SPR) absorption peaks of the Au-NPs synthesised with Mt CDH and Gc GDH were observed at 535 nm, indicating an average size of around 50 nm. According to the image analysis performed on a TEM micrograph, the Au-NPs synthesized with Gc GDH have a spherical shape with an average size of 2.83 and 6.63 nm after 24 and 48 h of the reaction, respectively. KEY POINTS: • The Au NPs were synthesised by the action of enzymes CDH and GDH. • The synthesis of Au-NPs by CDH is related to the oxidation of cellobiose. • The synthesis of Au-NPs by GDH was not driven by the reaction kinetic.


Assuntos
Nanopartículas Metálicas , Oxirredutases , Ouro , Glucose 1-Desidrogenase , Bactérias
6.
Polymers (Basel) ; 15(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38006083

RESUMO

Addressing the growing need for environmentally friendly fungicides in agriculture, this study explored the potential of biopolymer microparticles loaded with metal ions as a novel approach to combat fungal pathogens. Novel alginate microspheres and chitosan/alginate microcapsules loaded with zinc or with zinc and silver ions were prepared and characterized (microparticle size, morphology, topography, encapsulation efficiency, loading capacity, and swelling behavior). Investigation of molecular interactions in microparticles using FTIR-ATR spectroscopy exhibited complex interactions between all constituents. Fitting to the simple Korsmeyer-Peppas empirical model revealed the rate-controlling mechanism of metal ions release from microparticles is Fickian diffusion. Lower values of the release constant k imply a slower release rate of Zn2+ or Ag+ ions from microcapsules compared to that of microspheres. The antimicrobial potential of the new formulations against the fungus Botrytis cinerea was evaluated. When subjected to tests against the fungus, microspheres exhibited superior antifungal activity especially those loaded with both zinc and silver ions, reducing fungal growth up to 98.9% and altering the hyphal structures. Due to the slower release of metal ions, the microcapsule formulations seem suitable for plant protection throughout the growing season. The results showed the potential of these novel microparticles as powerful fungicides in agriculture.

7.
Polymers (Basel) ; 14(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36433085

RESUMO

Tremendous developments in nanotechnology have revolutionized the impact of nanoparticles (NPs) in the scientific community and, more recently, in society. Nanomaterials are by their definition materials that have at least one dimension in range of 1 to 100 nm. Nanoparticles are found in many types of different technological and scientific applications and innovations, from delicate electronics to state-of-the-art medical treatments. Medicine has recognized the importance of polymer materials coated with NPs and utilizes them widely thanks to their excellent physical, chemical, antibacterial, antimicrobial, and protective properties. Emphasis is given to their biomedical application, as the nanoscale structures are in the range of many biological molecules. Through this, they can achieve many important features such as targeted drug delivery, imaging, photo thermal therapy, and sensors. Moreover, by manipulating in a "nano-scale" range, their characteristic can be modified in order to obtain the desired properties needed in particular biomedical fields, such as electronic, optical, surface plasmon resonance, and physic-chemical features.

8.
Molecules ; 27(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234925

RESUMO

The textile industry is one of the largest water-polluting industries in the world. Due to an increased application of chromophores and a more frequent presence in wastewaters, the need for an ecologically favorable dye degradation process emerged. To predict the decolorization rate of textile dyes with Lytic polysaccharide monooxygenase (LPMO), we developed, validated, and utilized the molecular descriptor structural causality model (SCM) based on the decision tree algorithm (DTM). Combining mathematical models and theories with decolorization experiments, we have elucidated the most important molecular properties of the dyes and confirm the accuracy of SCM model results. Besides the potential utilization of the developed model in the treatment of textile dye-containing wastewater, the model is a good base for the prediction of the molecular properties of the molecule. This is important for selecting chromophores as the reagents in determining LPMO activities. Dyes with azo- or triarylmethane groups are good candidates for colorimetric LPMO assays and the determination of LPMO activity. An adequate methodology for the LPMO activity determination is an important step in the characterization of LPMO properties. Therefore, the SCM/DTM model validated with the 59 dyes molecules is a powerful tool in the selection of adequate chromophores as reagents in the LPMO activity determination and it could reduce experimentation in the screening experiments.


Assuntos
Oxigenases de Função Mista , Águas Residuárias , Compostos Azo , Biodegradação Ambiental , Corantes , Oxigenases de Função Mista/metabolismo , Modelos Teóricos , Polissacarídeos/metabolismo , Indústria Têxtil , Têxteis , Águas Residuárias/química , Água
9.
Pharmaceutics ; 14(8)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36015339

RESUMO

Growing morbidity and mortality rates due to increase in the number of infections caused by MDR (multi-drug resistant) microorganisms are becoming some of the foremost global health issues. Thus, the need to search for and find novel approaches to fight AMR (antimicrobial resistance) has become obligatory. This study aimed to determine the antimicrobial properties of commercially purchased colloidal platinum nanoparticles by examining the existence and potency of their antibacterial effects and investigating the mechanisms by means of which they express these activities. Antimicrobial properties were investigated with respect to standard laboratory ATCC (American Type Cell Culture) and clinical extended-spectrum beta-lactamase (ESBL)-producing strains of Escherichia (E.) coli and Klebsiella (K.) pneumoniae. Standard microbiological methods of serial microdilution, modulation of microbial cell death kinetics ("time-kill" assays), and biofilm inhibition were used. Bacterial cell wall damage and ROS (reactive oxygen species) levels were assessed in order to explore the mechanisms of platinum nanoparticles' antibacterial activities. Platinum nanoparticles showed strong antibacterial effects against all tested bacterial strains, though their antibacterial effects were found to succumb to time kinetics. Antibiofilm activity was modest overall and significantly effective only against E. coli strains. By measuring extracellular DNA/RNA and protein concentrations, induced bacterial cell wall damage could be assumed. The determination of ROS levels induced by platinum nanoparticles revealed their possible implication in antibacterial activity. We conclude that platinum nanoparticles exhibit potent antibacterial effects against standard laboratory and resistant strains of E. coli and K. pneumoniae. Both, cell wall damage and ROS induction could have important role as mechanisms of antibacterial activity, and, require further investigation.

10.
Polymers (Basel) ; 14(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35631845

RESUMO

The development of antimicrobial polymers is a priority for engineers fighting microbial resistant strains. Silver ions and silver nanoparticles can assist in enhancing the antimicrobial properties of microcapsules that release such substances in time which prolongs the efficiency of antimicrobial effects. Therefore, this study aimed to functionalize different polymer surfaces with antimicrobial core/shell microcapsules. Microcapsules were made of sodium alginate in shell and filled with antimicrobial silver in their core prior to application on the surface of polymer materials by dip-coating methodology. Characterization of polymers after functionalization was performed by several spectroscopic and microscopic techniques. After the characterization of polymers before and after the functionalization, the release of the active substances was monitored in time. The obtained test results can help with the calculation on the minimal concentration of antimicrobial silver that is encapsulated to achieve the desired amounts of release over time.

11.
Molecules ; 27(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35630696

RESUMO

Silver (Ag) and zinc (Zn) are very powerful antimicrobial metals. Therefore, in this research, a high-throughput, sensitive, and rapid method was developed for the determination of Ag and Zn in microcapsules using inductively coupled plasma mass spectrometry (ICP-MS). The sample preparation procedure employed simple microwave digestion of the microcapsules with 55.55% v/v HNO3 and 44.45% v/v H2O2. The method was applied to determine Ag and Zn in microcapsule samples of different sizes (120 and 450 µm) after their preparation with and without chitosan. Prepared microcapsules, after characterization, were bonded to a polymer carrier by sol-gel procedure and the materials were characterized by FTIR spectroscopy and high-resolution optical microscopy. Significant differences were found in Ag and Zn levels between microcapsules samples prepared with and without chitosan. The results have shown that samples with chitosan had up to 20% higher levels of Zn than Ag: 120 µm microcapsules contained 351.50 µg/g of Ag and 85.51 µg/g of Zn, respectively. In contrast, samples prepared without chitosan showed larger overall variability: In microcapsules with a diameter of 120 µm, the amounts of antimicrobial metals were 98.32 µg/g of Ag and 106.75 µg of Zn, respectively. Moreover, 450 µm microcapsules contained 190.98 µg/g of Ag and 121.35 µg/g of Zn. Those quantities are high enough for efficient antimicrobial activity of newly prepared microcapsules, enabling the application of microcapsules in different antimicrobial coatings.


Assuntos
Anti-Infecciosos , Quitosana , Antibacterianos/farmacologia , Cápsulas , Quitosana/química , Peróxido de Hidrogênio , Metais/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Zinco
12.
Polymers (Basel) ; 13(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672118

RESUMO

In this work the in vitro antimicrobial activity of colloidal solutions of nine different commercially available nanoparticles were investigated against Staphylococcus aureus strains, both methicillin-sensitive (MSSA) and methicillin-resistant (MRSA). Research covered antimicrobial investigation of different metal and metal-oxide nanoparticles, including Ag 10 nm, Ag 40 nm, Al2O3 100 nm, Au 20 nm, Pt 4 nm, TiO2 100 nm, Y2O3 100 nm, ZnO 100 nm and ZrO2 100 nm nanoparticles. Such materials were foreseen to be applied as coatings on 3D-printed biodegradable polymers: i.e., catheters, disposable materials, hospital bedding items, disposable antimicrobial linings and bandages for chronic wounds. Therefore, the antimicrobial activity of the nanoparticles was determined by agar well diffusion assays and serial microdilution broth assays. In addition, the chromatographic characterization of elements present in trace amounts was performed as a method for tracing the nanoparticles. Moreover, the potential of preparing the rough surface of biodegradable polymers for coating with antimicrobial nanoparticles was tested by 3D-printing fused deposition methodology. The in vitro results have shown that particular nanoparticles provided powerful antimicrobial effects against MSSA and MRSA strains, and can be easily applied on different biopolymers.

13.
Polymers (Basel) ; 12(9)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32961944

RESUMO

Polymer materials can be functionalized with different surface treatments. By applying nanoparticles in coating, excellent antimicrobial properties are achieved. In addition, antimicrobial properties are enhanced by hydrophobic surface modification. Therefore, the goal of this work was to modify the process parameters to achieve excellent hydrophobicity of polymer surfaces. For this purpose, a Design of Experiment (DoE) statistical methodology was used to model and optimize the process through six processing parameters. In order to obtain the optimum and to study the interaction between parameters, response surface methodology coupled with a center composite design was applied. The ANNOVA test was significant for all variables. The results of the influence of process parameters showed that, by increasing the pressure, concentration of hydrophobic compounds and dye concentration, water vapor permeability was enhanced, while by decreasing weight, its efficiency was enhanced. Moreover, the increase in the temperature enhanced water vapor permeability but decreased the resistance to water wetting. An optimal process with ecologically favorable 6C fluorocarbon (68.802 g/L) surpassed all preliminary test results for 21.15%. The optimal process contained the following parameters: 154.3 °C, 1.05 bar, 56.07 g/L dye, 220 g/m2 fabric. Therefore, it is shown that DoE is an excellent tool for optimization of the parameters used in polymer surface functionalization.

14.
Food Technol Biotechnol ; 57(2): 272-281, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31537976

RESUMO

This work investigates the methodology of producing a 3D-printed microreactor from the acrylic resin by PolyJet Matrix process. The PolyJet Matrix technology employs different materials or their combinations to generate 3D-printed structures, from small ones to complex geometries, with different material properties. Experimental and numerical methods served for the evaluation of the geometry and production of the microreactor and its hydrodynamic characterization. The operational limits of the single-phase flow in the microchannels, further improvements and possible applications of the microreactor were assessed based on the hydrodynamic characterization.

16.
Biotechnol J ; 9(4): 483-92, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24677771

RESUMO

The recalcitrance of lignocellulose makes enzymatic hydrolysis of plant biomass for the production of second generation biofuels a major challenge. This work investigates an efficient and economic approach for the enzymatic hydrolysis of sugar beet pulp (SBP), which is a difficult to degrade, hemicellulose-rich by-product of the table sugar industry. Three fungal strains were grown on different substrates and the production of various extracellular hydrolytic and oxidative enzymes involved in pectin, hemicellulose, and cellulose breakdown were monitored. In a second step, the ability of the culture supernatants to hydrolyze thermally pretreated SBP was tested in batch experiments. The supernatant of Sclerotium rolfsii, a soil-borne facultative plant pathogen, was found to have the highest hydrolytic activity on SBP and was selected for further hydrolyzation experiments. A low enzyme load of 0.2 mg g(-1) protein from the culture supernatant was sufficient to hydrolyze a large fraction of the pectin and hemicelluloses present in SBP. The addition of Trichoderma reesei cellulase (1-17.5 mg g(-1) SBP) resulted in almost complete hydrolyzation of cellulose. It was found that the combination of pectinolytic, hemicellulolytic, and cellulolytic activities works synergistically on the complex SBP composite, and a combination of these hydrolytic enzymes is required to achieve a high degree of enzymatic SBP hydrolysis with a low enzyme load.


Assuntos
Beta vulgaris/química , Celulase/metabolismo , Proteínas Fúngicas/metabolismo , Fungos/enzimologia , Fungos/metabolismo , Celulose/análise , Celulose/metabolismo , Fungos/fisiologia , Glucose/metabolismo , Hidrólise , Micélio/metabolismo , Micélio/fisiologia , Oxirredutases
17.
Environ Sci Technol ; 46(19): 10690-6, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22934685

RESUMO

Environmental pollution by industrial wastewaters polluted with toxic heavy metals is of great concern. Various guidelines regulate the quality of water released from industrial plants and of surface waters. In wastewater treatment, bioreactors with microbial biofilms are widely used. A horizontal rotating tubular bioreactor (HRTB) is a combination of a thin layer and a biodisc reactor with an interior divided by O-ring shaped partition walls as carriers for microbial biomass. Using a biofilm of heavy metal resistant bacteria in combination with this special design provides various advantages for wastewater treatment proven in a pilot study. In the presented study, the applicability of HRTB for removing metals commonly present in textile wastewaters (chromium, manganese, cobalt) was investigated. Artificial wastewaters with a load of 125 mg/L of each metal underwent the bioreactor treatment. Different process parameters (inflow rate, rotation speed) were applied for optimizing the removal efficiency. Samples were drawn along the bioreactor length for monitoring the metal contents on site by UV-vis spectrometry. The metal uptake of the biomass was determined by ICP-MS after acidic microwave assisted digestion. The maximum removal rates obtained for chromium, manganese, and cobalt were: 100%, 94%, and 69%, respectively.


Assuntos
Reatores Biológicos , Cromo/isolamento & purificação , Cobalto/isolamento & purificação , Manganês/isolamento & purificação , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Biomassa , Desenho de Equipamento , Indústria Têxtil , Eliminação de Resíduos Líquidos/instrumentação
18.
Coll Antropol ; 35(1): 89-92, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21661359

RESUMO

Despite the high competition of synthetic fibers leather is nowadays still widely used for many applications. In order to ensure a sufficient stability of the skin matrix against many factors, such as microbial degradation, heat and sweat, a tanning process is indispensable. Using chromium (III) for this purpose offers a multitude of advantages, thus this way of tanning is widely applied. During the use of chromium tanned leather as clothing material as well as for decoration/covering purposes, chromium is extracted from the leather and may then cause nocuous effects to human skin, e.g. allergic reactions. Thus the knowledge of the total chromium content of leather samples expected to come into prolonged touch with human skin is very important. In car industry leather is used as cover for seats, steering wheel and gearshift lever The chromium contents often chromium tanned leather samples used in car industry were determined. First all samples were dried at 65 degrees C overnight and then cut in small pieces using a ceramic knife, weighed and analyzed by inductively coupled plasma--optical emission spectrometry (ICP-OES) after acidic microwave assisted digestion. The total chromium amounts found were in the range from 19 mg/g up to 32 mg/g. The extraction yield of chromium from leather samples in sweat is approximately 2-7%. Thus especially during long journeys in summer chromium can be extracted in amounts which may cause nocuous effects for example on the palm of the hands or on the back.


Assuntos
Automóveis , Cromo/análise , Curtume , Têxteis/análise , Animais , Bovinos , Espectrofotometria
19.
Talanta ; 83(3): 865-71, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21147330

RESUMO

A simple, robust and reliable analytical procedure for the determination of 28 selected elements, namely Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, Hg, Mg, Mn, Mo, Na, Ni, Pb, Sc, Si, Se, Sn, Sm, Sr, Tl, V, and Zn in textile materials by inductively coupled plasma optical emission spectrometry (ICP-OES) after microwave digestion of samples was optimized and validated in this work. The total amount of elements present in textile samples was determined after microwave digestion of materials in 7 mol/L nitric acid within the optimal working program: 5 min at 150°C (power 250 W), 15 min 180°C (300 W) and 20 min at the maximum temperature of 200°C (350 W). For the quality control reasons, which were ascertained by analysis of the certified cotton trace elements reference material IAEA-V9, the ICP-OES method was optimized through several parameters: by comparing Meinhard and Gemcone Low Flow nebulizers efficiency, ranging nebulizer gas flows from 0.6 to 1.0 L/min, ranging sample flows from 0.8 to 1.2 mL/min, testing RF power from 1200 to 1400 W, detecting data acquisition time (read time) from 0 to 527 s, ranging washing (delay) time from 0 to 408 s, as well as by checking the occurring interferences for the optimal line selection. Validation included determination of linearity, selectivity, accuracy, reproducibility, precision and limits of detection calculated for all 28 selected elements of interest. The developed analytical procedure was successfully applied on textile fibers (cotton, flax and hemp) as well as on standard knitted textile sample materials (cotton and wool).


Assuntos
Metais/análise , Fenômenos Ópticos , Gases em Plasma/química , Análise Espectral/métodos , Têxteis/análise , Calibragem , Cannabis/química , Fibra de Algodão , Linho/química , Limite de Detecção , Modelos Lineares , Metais/química , Micro-Ondas , Controle de Qualidade , Reprodutibilidade dos Testes
20.
Talanta ; 82(1): 237-44, 2010 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-20685462

RESUMO

Characterization of metal threads on historical textile materials is important for preservation of valuable cultural heritage. Obtained results dictate decisions on cleaning, conservation and restoration steps. The most important part of characterization is chemical analysis of originally applied materials, since this enables understanding the nature of chemical and physical degradation and determines the cleaning methods. Methods applied should be non-destructive and sensitive enough to detect trace elements in small sample amounts. The goal of this research was to describe the most useful procedures for fast and simple determination of specific metals of interest. Therefore we propose application of scanning electron microscopy equipped with EDS detector (SEM-EDS) for sample surface analysis and inductively coupled plasma-optical emission spectroscopy (ICP-OES) for chemical analysis of metals threads. For quality insurance reasons, a comparative method applied for chemical analysis was atomic absorption spectrometry (AAS). This combination of methods has proven to be very useful in analysis of historical samples, since SEM-EDS was a simple and non-destructive method which provided information on chemical composition of sample surfaces, while ICP-OES and AAS enabled the full insight into the average chemical composition of samples. Nevertheless, both ICP-OES and AAS were destructive methods which demanded dissolving of samples prior to the analysis. In this work nine different metal fibers collected from historical textile materials were characterized. Proposed methods enabled obtaining information on sample constitution, morphology, topology and chemical composition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA