Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37299640

RESUMO

We present a study with a numerical model based on k→·p→, including electromechanical fields, to evaluate the electromechanical and optoelectronic properties of single GaAs quantum dots embedded in direct band gap AlGaAs nanowires. The geometry and the dimensions of the quantum dots, in particular the thickness, are obtained from experimental data measured by our group. We also present a comparison between the experimental and numerically calculated spectra to support the validity of our model.

2.
Nanomaterials (Basel) ; 13(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36985964

RESUMO

Hybrid nanostructures based on InGaN nanowires with decorated plasmonic silver nanoparticles are investigated in the present study. It is shown that plasmonic nanoparticles induce the redistribution of room temperature photoluminescence between short-wavelength and long-wavelength peaks of InGaN nanowires. It is defined that short-wavelength maxima decreased by 20%, whereas the long-wavelength maxima increased by 19%. We attribute this phenomenon to the energy transfer and enhancement between the coalesced part of the NWs with 10-13% In content and the tips above with an In content of about 20-23%. A proposed Fröhlich resonance model for silver NPs surrounded by a medium with refractive index of 2.45 and spread 0.1 explains the enhancement effect, whereas the decreasing of the short-wavelength peak is associated with the diffusion of charge carriers between the coalesced part of the NWs and the tips above.

3.
Nano Lett ; 23(3): 895-901, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36649590

RESUMO

Wurtzite AlGaAs is a technologically promising yet unexplored material. Here we study it both experimentally and numerically. We develop a complete numerical model based on an 8-band k→·p→ method, including electromechanical fields, and calculate the optoelectronic properties of wurtzite AlGaAs nanowires with different Al content. We then compare them with our experimental data. Our results strongly suggest that wurtzite AlGaAs is a direct band gap material. Moreover, we have also numerically obtained the band gap of wurtzite AlAs and the valence band offset between AlAs and GaAs in the wurtzite symmetry.

4.
Nanomaterials (Basel) ; 12(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35889566

RESUMO

GaN nanowires were grown using selective area plasma-assisted molecular beam epitaxy on SiOx/Si(111) substrates patterned with microsphere lithography. For the first time, the temperature-Ga/N2 flux ratio map was established for selective area epitaxy of GaN nanowires. It is shown that the growth selectivity for GaN nanowires without any parasitic growth on a silica mask can be obtained in a relatively narrow range of substrate temperatures and Ga/N2 flux ratios. A model was developed that explains the selective growth range, which appeared to be highly sensitive to the growth temperature and Ga flux, as well as to the radius and pitch of the patterned pinholes. High crystal quality in the GaN nanowires was confirmed through low-temperature photoluminescence measurements.

5.
Nanomaterials (Basel) ; 12(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055259

RESUMO

Tailorable synthesis of axially heterostructured epitaxial nanowires (NWs) with a proper choice of materials allows for the fabrication of novel photonic devices, such as a nanoemitter in the resonant cavity. An example of the structure is a GaP nanowire with ternary GaPAs insertions in the form of nano-sized discs studied in this work. With the use of the micro-photoluminescence technique and numerical calculations, we experimentally and theoretically study photoluminescence emission in individual heterostructured NWs. Due to the high refractive index and near-zero absorption through the emission band, the photoluminescence signal tends to couple into the nanowire cavity acting as a Fabry-Perot resonator, while weak radiation propagating perpendicular to the nanowire axis is registered in the vicinity of each nano-sized disc. Thus, within the heterostructured nanowire, both amplitude and spectrally anisotropic photoluminescent signals can be achieved. Numerical modeling of the nanowire with insertions emitting in infrared demonstrates a decay in the emission directivity and simultaneous rise of the emitters coupling with an increase in the wavelength. The emergence of modulated and non-modulated radiation is discussed, and possible nanophotonic applications are considered.

6.
Nanomaterials (Basel) ; 11(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34835659

RESUMO

Control of directionality of emissions is an important task for the realization of novel nanophotonic devices based on nanowires. Most of the existing approaches providing high directionality of the light emitted from nanowires are based on the utilization of the tapered shape of nanowires, serving as nanoantenna coupling with the light waveguided in nanowire and the directional output beam. Here we report the beaming of the emitted light with wavelength near 800 nm by naturally formed core-shell AlGaAs NW with multiply GaAs quantum dots (QDs) diameter 30 nm and height 10 nm, while the diameter of NW 130 nm, what does not support efficient emission into waveguided modes, including the mode HE11. Experimental measurements show that intensity of emission for directions in the vicinity of the axis of NW is about two orders of magnitude higher than for perpendicular directions. The developed theoretical approach allowed us to calculate the probability of spontaneous emission for various directions and into waveguided modes and showed that highly directional radiation can be provided by the intrinsic emission properties of cylindrical NW. Our results suggest that for the small diameter of NW, directional emissions are associated with an TM0 leaky mode (when electric field oriented in axial direction) and therefore manifests in an existence of axial electric dipole transitions in quantum dots.

7.
Nanotechnology ; 32(38)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34116523

RESUMO

Young's modulus of tapered mixed composition (zinc-blende with a high density of twins and wurtzite with a high density of stacking faults) gallium phosphide (GaP) nanowires (NWs) was investigated by atomic force microscopy. Experimental measurements were performed by obtaining bending profiles of as-grown inclined GaP NWs deformed by applying a constant force to a series of NW surface locations at various distances from the NW/substrate interface. Numerical modeling of experimental data on bending profiles was done by applying Euler-Bernoulli beam theory. Measurements of the nano-local stiffness at different distances from the NW/substrate interface revealed NWs with a non-ideal mechanical fixation at the NW/substrate interface. Analysis of the NWs with ideally fixed base resulted in experimentally measured Young's modulus of 155 ± 20 GPa for ZB NWs, and 157 ± 20 GPa for WZ NWs, respectively, which are in consistence with a theoretically predicted bulk value of 167 GPa. Thus, impacts of the crystal structure (WZ/ZB) and crystal defects on Young's modulus of GaP NWs were found to be negligible.

8.
Nanotechnology ; 32(33)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-33975293

RESUMO

InGaN nanostructures are among the most promising candidates for visible solid-state lighting and renewable energy sources. To date, there is still a lack of information about the influence of the growth conditions on the physical properties of these nanostructures. Here, we extend the study of InGaN nanowires growth directly on Si substrates by plasma-assisted molecular beam epitaxy. The results of the study showed that under appropriate growth conditions a change in the growth temperature of just 10 °C leads to a significant change in the structural and optical properties of the nanowires. InGaN nanowires with the areas containing 4%-10% of In with increasing tendency towards the top are formed at the growth temperature of 665 °C, while at the growth temperatures range of 655 °C-660 °C the spontaneously core-shell NWs are typically presented. In the latter case, the In contents in the core and the shell are about an order of magnitude different (e.g. 35% and 4% for 655 °C, respectively). The photoluminescence study of the NWs demonstrates a shift in the spectra from blue to orange in accordance with an increase of In content. Based on these results, a novel approach to the monolithic growth of InxGa1-xN NWs with multi-colour light emission on Si substrates by setting a temperature gradient over the substrate surface is proposed.

9.
Nanomaterials (Basel) ; 11(3)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807550

RESUMO

The passivation influence by ligands coverage with trioctylphosphine oxide (TOPO) and TOPO including colloidal CdSe/ZnS quantum dots (QDs) on optical properties of the semiconductor heterostructure, namely an array of InP nanowires (NWs) with InAsP nanoinsertion grown by Au-assisted molecular beam epitaxy on Si (111) substrates, was investigated. A significant dependence of the photoluminescence (PL) dynamics of the InAsP insertions on the ligand type was shown, which was associated with the changes in the excitation translation channels in the heterostructure. This change was caused by a different interaction of the ligand shells with the surface of InP NWs, which led to the formation of different interfacial low-energy states at the NW-ligand boundary, such as surface-localized antibonding orbitals and hybridized states that were energetically close to the radiating state and participate in the transfer of excitation. It was shown that the quenching of excited states associated with the capture of excitation to interfacial low-energy traps was compensated by the increasing role of the "reverse transfer" mechanism. As a result, the effectiveness of TOPO-CdSe/ZnS QDs as a novel surface passivation coating was demonstrated.

10.
Micromachines (Basel) ; 11(6)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32532075

RESUMO

Research regarding ways to increase solar cell efficiency is in high demand. Mechanical deformation of a nanowire (NW) solar cell can improve its efficiency. Here, the effect of uniaxial compression on GaAs nanowire solar cells was studied via conductive atomic force microscopy (C-AFM) supported by numerical simulation. C-AFM I-V curves were measured for wurtzite p-GaAs NW grown on p-Si substrate. Numerical simulations were performed considering piezoresistance and piezoelectric effects. Solar cell efficiency reduction of 50% under a -0.5% strain was observed. The analysis demonstrated the presence of an additional fixed electrical charge at the NW/substrate interface, which was induced due to mismatch between the crystal lattices, thereby affecting the efficiency. Additionally, numerical simulations regarding the p-n GaAs NW solar cell under uniaxial compression were performed, showing that solar efficiency could be controlled by mechanical deformation and configuration of the wurtzite and zinc blende p-n segments in the NW. The relative solar efficiency was shown to be increased by 6.3% under -0.75% uniaxial compression. These findings demonstrate a way to increase efficiency of GaAs NW-based solar cells via uniaxial mechanical compression.

11.
Nano Lett ; 19(7): 4463-4469, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31203633

RESUMO

The electronic properties of semiconductor AIIIBV nanowires (NWs) due to their high surface/volume ratio can be effectively controlled by NW strain and surface electronic states. We study the effect of applied tension on the conductivity of wurtzite InxGa1-xAs (x ∼ 0.8) NWs. Experimentally, conductive atomic force microscopy is used to measure the I-V curves of vertically standing NWs covered by native oxide. To apply tension, the microscope probe touching the NW side is shifted laterally to produce a tensile strain in the NW. The NW strain significantly increases the forward current in the measured I-V curves. When the strain reaches 4%, the I-V curve becomes almost linear, and the forward current increases by 3 orders of magnitude. In the latter case, the tensile strain is supposed to shift the conduction band minima below the Fermi level, whose position, in turn, is fixed by surface states. Consequently, the surface conductivity channel appears. The observed effects confirm that the excess surface arsenic is responsible for the Fermi level pinning at oxidized surfaces of III-As NWs.

12.
Nanotechnology ; 29(31): 314003, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-29757753

RESUMO

Fermi level pinning at the oxidized (110) surfaces of III-As nanowires (GaAs, InAs, InGaAs, AlGaAs) is studied. Using scanning gradient Kelvin probe microscopy, we show that the Fermi level at oxidized cleavage surfaces of ternary Al x Ga1-x As (0 ≤ x ≤ 0.45) and Ga x In1-x As (0 ≤ x ≤ 1) alloys is pinned at the same position of 4.8 ± 0.1 eV with regard to the vacuum level. The finding implies a unified mechanism of the Fermi level pinning for such surfaces. Further investigation, performed by Raman scattering and photoluminescence spectroscopy, shows that photooxidation of the Al x Ga1-x As and Ga x In1-x As nanowires leads to the accumulation of an excess of arsenic on their crystal surfaces which is accompanied by a strong decrease of the band-edge photoluminescence intensity. We conclude that the surface excess arsenic in crystalline or amorphous forms is responsible for the Fermi level pinning at oxidized (110) surfaces of III-As nanowires.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...