Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2400977, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508776

RESUMO

Artificial intelligence (AI) is often considered a black box because it provides optimal answers without clear insight into its decision-making process. To address this black box problem, explainable artificial intelligence (XAI) has emerged, which provides an explanation and interpretation of its decisions, thereby promoting the trustworthiness of AI systems. Here, a memristive XAI hardware framework is presented. This framework incorporates three distinct types of memristors (Mott memristor, valence change memristor, and charge trap memristor), each responsible for performing three essential functions (perturbation, analog multiplication, and integration) required for the XAI hardware implementation. Three memristor arrays with high robustness are fabricated and the image recognition of 3 × 3 testing patterns and their explanation map generation are experimentally demonstrated. Then, a software-based extended system based on the characteristics of this hardware is built, simulating a large-scale image recognition task. The proposed system can perform the XAI operations with only 4.32% of the energy compared to conventional digital systems, enlightening its strong potential for the XAI accelerator.

2.
Adv Mater ; 36(18): e2309708, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38251443

RESUMO

Insects can efficiently perform object motion detection via a specialized neural circuit, called an elementary motion detector (EMD). In contrast, conventional machine vision systems require significant computational resources for dynamic motion processing. Here, a fully memristive EMD (M-EMD) is presented that implements the Hassenstein-Reichardt (HR) correlator, a biological model of the EMD. The M-EMD consists of a simple Wye (Y) configuration, including a static resistor, a dynamic memristor, and a Mott memristor. The resistor and dynamic memristor introduce different signal delays, enabling spatio-temporal signal integration in the subsequent Mott memristor, resulting in a direction-selective response. In addition, a neuromorphic system is developed employing the M-EMDs to predict a lane-changing maneuver by vehicles on the road. The system achieved a high accuracy (> 87%) in predicting future lane-changing maneuvers on the Next Generation Simulation (NGSIM) dataset while reducing the computational cost by 92.9% compared to the conventional neuromorphic system without the M-EMD, suggesting its strong potential for edge-level computing.

3.
Nat Commun ; 14(1): 7199, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938550

RESUMO

Energy-based computing is a promising approach for addressing the rising demand for solving NP-hard problems across diverse domains, including logistics, artificial intelligence, cryptography, and optimization. Probabilistic computing utilizing pbits, which can be manufactured using the semiconductor process and seamlessly integrated with conventional processing units, stands out as an efficient candidate to meet these demands. Here, we propose a novel pbit unit using an NbOx volatile memristor-based oscillator capable of generating probabilistic bits in a self-clocking manner. The noise-induced metal-insulator transition causes the probabilistic behavior, which can be effectively modeled using a multi-noise-induced stochastic process around the metal-insulator transition temperature. We demonstrate a memristive Boltzmann machine based on our proposed pbit and validate its feasibility by solving NP-hard problems. Furthermore, we propose a streamlined operation methodology that considers the autocorrelation of individual bits, enabling energy-efficient and high-performance probabilistic computing.

4.
Nano Lett ; 23(11): 5399-5407, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-36930534

RESUMO

NbOx-based Mott memristors exhibit fast threshold switching behaviors, making them suitable for spike generators in neuromorphic computing and stochastic clock generators in security devices. In these applications, a high output spike amplitude is necessary for threshold level control and accurate signal detection. Here, we propose a materialwise solution to obtain the high amplitude spikes by inserting Au nanodots into the NbOx device. The Au nanodots enable increasing the threshold voltage by modulating the oxygen contents at the electrode-oxide interface, providing a higher ON current compared to nanodot-free NbOx devices. Also, the reduction of the local switching region volume decreases the thermal capacitance of the system, allowing the maximum spike amplitude generation. Consequently, the Au nanodot incorporation increases the spike amplitude of the NbOx device by 6 times, without any additional external circuit elements. The results are systematically supported by both a numerical model and a finite-element-method-based multiphysics model.

5.
ACS Appl Mater Interfaces ; 14(31): 35949-35958, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35900018

RESUMO

Valence change-type resistance switching behaviors in oxides can be understood by well-established physical models describing the field-driven oxygen vacancy distribution change. In those models, electroformed residual oxygen vacancy filaments are crucial as they work as an electric field concentrator and limit the oxygen vacancy movement along the vertical direction. Therefore, their movement outward by diffusion is negligible. However, this situation may not be applicable in the electroforming-free system, where the field-driven movement is less prominent, and the isotropic oxygen vacancy diffusion by concentration gradient is more significant, which has not been given much consideration in the conventional model. Here, we propose a modified physical model that considers the change in the oxygen vacancies' charged state depending on their concentrations and the resulting change in diffusivity during switching to interpret the electroforming-free device behaviors. The model suggests formation of an hourglass-shaped filament constituting a lower concentration of oxygen vacancies due to the fluid oxygen diffusion in the thin oxide. Consequently, the proposed model can explain the electroforming-free device behaviors, including the retention failure mechanism, and suggest an optimized filament configuration for improved retention characteristics. The proposed model can plausibly explain both the electroformed and the electroforming-free devices. Therefore, it can be a standard model for valence change memristors.

6.
Nat Commun ; 12(1): 2906, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006879

RESUMO

The intrinsic stochasticity of the memristor can be used to generate true random numbers, essential for non-decryptable hardware-based security devices. Here, we propose a novel and advanced method to generate true random numbers utilizing the stochastic oscillation behavior of a NbOx mott memristor, exhibiting self-clocking, fast and variation tolerant characteristics. The random number generation rate of the device can be at least 40 kb s-1, which is the fastest record compared with previous volatile memristor-based TRNG devices. Also, its dimensionless operating principle provides high tolerance against both ambient temperature variation and device-to-device variation, enabling robust security hardware applicable in harsh environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...