Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiome ; 12(1): 7, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191433

RESUMO

BACKGROUND: The hadal sediment, found at an ocean depth of more than 6000 m, is geographically isolated and under extremely high hydrostatic pressure, resulting in a unique ecosystem. Thaumarchaeota are ubiquitous marine microorganisms predominantly present in hadal environments. While there have been several studies on Thaumarchaeota there, most of them have primarily focused on ammonia-oxidizing archaea (AOA). However, systematic metagenomic research specifically targeting heterotrophic non-AOA Thaumarchaeota is lacking. RESULTS: In this study, we explored the metagenomes of Challenger Deep hadal sediment, focusing on the Thaumarchaeota. Functional analysis of sequence reads revealed the potential contribution of Thaumarchaeota to recalcitrant dissolved organic matter degradation. Metagenome assembly binned one new group of hadal sediment-specific and ubiquitously distributed non-AOA Thaumarchaeota, named Group-3.unk. Pathway reconstruction of this new type of Thaumarchaeota also supports heterotrophic characteristics of Group-3.unk, along with ABC transporters for the uptake of amino acids and carbohydrates and catabolic utilization of these substrates. This new clade of Thaumarchaeota also contains aerobic oxidation of carbon monoxide-related genes. Complete glyoxylate cycle is a distinctive feature of this clade in supplying intermediates of anabolic pathways. The pan-genomic and metabolic analyses of metagenome-assembled genomes belonging to Group-3.unk Thaumarchaeota have highlighted distinctions, including the dihydroxy phthalate decarboxylase gene associated with the degradation of aromatic compounds and the absence of genes related to the synthesis of some types of vitamins compared to AOA. Notably, Group-3.unk shares a common feature with deep ocean AOA, characterized by their high hydrostatic pressure resistance, potentially associated with the presence of V-type ATP and di-myo-inositol phosphate syntheses-related genes. The enrichment of organic matter in hadal sediments might be attributed to the high recruitment of sequence reads of the Group-3.unk clade of heterotrophic Thaumarchaeota in the trench sediment. Evolutionary and genetic dynamic analyses suggest that Group-3 non-AOA consists of mesophilic Thaumarchaeota organisms. These results indicate a potential role in the transition from non-AOA to AOA Thaumarchaeota and from thermophilic to mesophilic Thaumarchaeota, shedding light on recent evolutionary pathways. CONCLUSIONS: One novel clade of heterotrophic non-AOA Thaumarchaeota was identified through metagenome analysis of sediments from Challenger Deep. Our study provides insight into the ecology and genomic characteristics of the new sub-group of heterotrophic non-AOA Thaumarchaeota, thereby extending the knowledge of the evolution of Thaumarchaeota. Video Abstract.


Assuntos
Amônia , Metagenoma , Metagenoma/genética , Ecossistema , Metagenômica , Archaea/genética
2.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38228401

RESUMO

Tarballs are formed from released or discharged crude oil containing sulfur compounds. A considerable amount and variety of sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) were identified in tarballs collected from the intertidal and supratidal zones of Alabama's Gulf beaches. Amplicon sequencing of the bacterial 16S rRNA gene showed that SRB were more abundantly distributed in the core than on the surface of tarballs, while no significant differences were observed in the distribution of SOB. To our best knowledge, this is the first report on the spatial distribution of diverse SRB and SOB in tarballs.


Assuntos
Bactérias , Enxofre , Alabama , RNA Ribossômico 16S/genética , Bactérias/genética , Oxirredução , Sulfatos
3.
J Microbiol ; 61(11): 967-980, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38062325

RESUMO

Antarctic polynyas have the highest Southern Ocean summer primary productivity, and due to anthropogenic climate change, these areas have formed faster recently. Ammonia-oxidizing archaea (AOA) are among the most ubiquitous and abundant microorganisms in the ocean and play a primary role in the global nitrogen cycle. We utilized metagenomics and metatranscriptomics to gain insights into the physiology and metabolism of AOA in polar oceans, which are associated with ecosystem functioning. A polar-specific ecotype of AOA, from the "Candidatus Nitrosomarinus"-like group, was observed to be dominant in the Amundsen Sea Polynya (ASP), West Antarctica, during a succession of summer phytoplankton blooms. AOA had the highest transcriptional activity among prokaryotes during the bloom decline phase (DC). Metatranscriptomic analysis of key genes involved in ammonia oxidation, carbon fixation, transport, and cell division indicated that this polar AOA ecotype was actively involved in nitrification in the bloom DC in the ASP. This study revealed the physiological and metabolic traits of this key polar-type AOA in response to phytoplankton blooms in the ASP and provided insights into AOA functions in polar oceans.


Assuntos
Archaea , Nitrificação , Archaea/genética , Archaea/metabolismo , Regiões Antárticas , Ecossistema , Amônia/metabolismo , Oxirredução , Perfilação da Expressão Gênica , Fitoplâncton , Filogenia
5.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37791995

RESUMO

Strain IT6T, a thermoacidophilic and facultative methane-oxidizing bacterium, was isolated from a mud-water mixture collected from Pisciarelli hot spring in Pozzuoli, Italy. The novel strain is white when grown in liquid or solid media and forms Gram-negative rod-shaped, non-flagellated, non-motile cells. It conserves energy by aerobically oxidizing methane and hydrogen while deriving carbon from carbon dioxide fixation. Strain IT6T had three complete pmoCAB operons encoding particulate methane monooxygenase and genes encoding group 1d and 3b [NiFe] hydrogenases. Simple carbon-carbon substrates such as ethanol, 2-propanol, acetone, acetol and propane-1,2-diol were used as alternative electron donors and carbon sources. Optimal growth occurred at 50-55°C and between pH 2.0-3.0. The major fatty acids were C18 : 0, C15 : 0 anteiso, C14 : 0 iso, C16 : 0 and C14 : 0, and the main polar lipids were phosphatidylethanolamine, aminophospholipid, phosphatidylglycerol, diphosphatidylglycerol, some unidentified phospholipids and glycolipids, and other unknown polar lipids. Strain IT6T has a genome size of 2.19 Mbp and a G+C content of 40.70 mol%. Relative evolutionary divergence using 120 conserved single-copy marker genes (bac120) and phylogenetic analyses based on bac120 and 16S rRNA gene sequences showed that strain IT6T is affiliated with members of the proposed order 'Methylacidiphilales' of the class Verrucomicrobiia in the phylum Verrucomicrobiota. It shared a 16S rRNA gene sequence identity of >96 % with cultivated isolates in the genus 'Methylacidiphilum' of the family 'Methylacidiphilaceae', which are thermoacidophilic methane-oxidizing bacteria. 'Methylacidiphilum sp.' Phi (100 %), 'Methylacidiphilum infernorum' V4 (99.02 %) and 'Methylacidiphilum sp.' RTK17.1 (99.02 %) were its closest relatives. Its physiological and genomic properties were consistent with those of other isolated 'Methylacidiphilum' species. Based on these results, we propose the name Methylacidiphilum caldifontis gen. nov., sp. nov. to accommodate strain IT6T (=KCTC 92103T=JCM 39288T). We also formally propose that the names Methylacidiphilaceae fam. nov. and Methylacidiphilales ord. nov. to accommodate the genus Methylacidiphilum gen. nov.


Assuntos
Ácidos Graxos , Metano , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Composição de Bases , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Fosfolipídeos/química , Oxirredução
6.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37824181

RESUMO

Strain 16-5T, a mesophilic methanotroph of the genus Methylococcus, was isolated from rice field soil sampled in Chungcheong Province, Republic of Korea. Strain 16-5T had both particulate and soluble methane monooxygenases and could only grow on methane and methanol as electron donors. Strain 16-5 T cells are Gram-negative, white to light tan in color, non-motile, non-flagellated, diplococcoid to cocci, and have the typical type I intracytoplasmic membrane system. Strain 16-5T grew at 18-38 °C (optimum, 27 °C) and at pH 5.0-8.0 (optimum, pH 6.5-7.0). C16 : 1 ω7c (38.8%), C16 : 1 ω5c (18.8%), C16 : 1 ω6c (16.8%) and C16 : 0 (16.9%) were the major fatty acids, and phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and an unidentified phospholipid were the major polar lipids. The main respiratory quinone was methylene-ubiquinone-8. Strain 16-5T displayed the highest 16S rRNA gene sequence similarities to other taxonomically recognized members of the genus Methylococcus, i.e. Methylococcus capsulatus TexasT (98.62%) and Methylococcus geothermalis IM1T (98.49 %), which were its closest relatives. It did, however, differ from all other taxonomically described Methylococcus species due to some phenotypic differences, most notably its inability to grow at temperatures above 38 °C, where other Methylococcus species thrive. Its 4.34 Mbp-sized genome has a DNA G+C content of 62.47 mol%, and multiple genome-based properties such as average nucleotide identity and digital DNA-DNA hybridization value distanced it from its closest relatives. Based on the data presented above, this strain represents the first non-thermotolerant species of the genus Methylococcus. The name Methylococcus mesophilus sp. nov. is proposed, and 16-5T (=JCM 35359T=KCTC 82050T) is the type strain.


Assuntos
Methylococcus , Oryza , Ácidos Graxos/química , RNA Ribossômico 16S/genética , Composição de Bases , Filogenia , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Análise de Sequência de DNA , Fosfolipídeos/química , Metano
7.
mSystems ; 8(3): e0102622, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37306481

RESUMO

The newly discovered complete ammonia-oxidizing (comammox) Nitrospira has been identified in different environments, including coastal environments, where salinity is one of the most important factors for the abundance and activity of nitrifiers. Here, we demonstrate the effect of salinity on comammox Nitrospira, canonical ammonia-oxidizing bacteria (AOB), and ammonia-oxidizing archaea (AOA) in the intertidal sediments of the Yangtze River estuary based on microcosm experiments, DNA stable-isotope probing (DNA-SIP), and potential ammonium-oxidation rate (PAR) tests for different groups of ammonia oxidizers with selective inhibitors. During microcosm incubations, the abundance of comammox Nitrospira was more sensitive to increased salinity than that of other ammonia oxidizers. The results obtained with DNA-SIP heavy fractions showed that the dominant phylotype in clade A.2 (containing genes involved in the adaptation to haloalkaline environments) had high proportions in comammox Nitrospira community under both freshwater (0.06% salinity) and highly saline water (3% salinity) conditions. In contrast, another phylotype of clade A.2 (which lacks these genes) was dominant only under freshwater conditions. The PARs confirmed that comammox Nitrospira presented greater contributions to nitrification under freshwater conditions with a PAR of 4.37 ± 0.53 mg N·day-1·kg soil-1 (54%) than under saline water conditions with a PAR of 0.60 ± 0.94 mg N·day-1·kg soil-1 (18%). Moreover, AOA were specific to saline water conditions, whereas AOB were common under both freshwater and saline water conditions (44% and 52%, respectively). The present study provided evidence that salinity markedly affects the activity of comammox Nitrospira, and that the salt sensitivity of different phylotypes varies. IMPORTANCE Complete ammonia oxidation (comammox) is a newly discovered type of nitrification through which ammonia is oxidized to nitrate in an organism. Comammox Nitrospira were abundantly found in coastal ecosystems and demonstrated high community diversity. Changes in salinity are considered one of the most important factors to comammox Nitrospira in coastal ecosystems; however, reports on the correlation between them remain inconsistent. Therefore, it is critical to experimentally determine the influence of salinity on comammox Nitrospira in the coastal ecosystem. This study demonstrated a clear effect of salinity on the abundance, activity, and relative contribution of different ammonia oxidizers, especially for comammox Nitrospira. To the best of our knowledge, this is the first study demonstrating comammox Nitrospira activity at seawater salinities, implying the existence of a salt-tolerant type comammox Nitrospira, despite its activity being much lower than in freshwater conditions. The indicated correlation between the activity of specific comammox Nitrospira and salinity is anticipated to provide insights into the distribution of comammox Nitrospira and their potential contributions in estuaries and coastal ecosystems.


Assuntos
Ecossistema , Nitrificação , Estuários , Amônia , Rios , Salinidade , Bactérias/genética , Oxirredução , Solo , DNA
8.
Artigo em Inglês | MEDLINE | ID: mdl-37097839

RESUMO

Methanogenic archaea are a diverse, polyphyletic group of strictly anaerobic prokaryotes capable of producing methane as their primary metabolic product. It has been over three decades since minimal standards for their taxonomic description have been proposed. In light of advancements in technology and amendments in systematic microbiology, revision of the older criteria for taxonomic description is essential. Most of the previously recommended minimum standards regarding phenotypic characterization of pure cultures are maintained. Electron microscopy and chemotaxonomic methods like whole-cell protein and lipid analysis are desirable but not required. Because of advancements in DNA sequencing technologies, obtaining a complete or draft whole genome sequence for type strains and its deposition in a public database are now mandatory. Genomic data should be used for rigorous comparison to close relatives using overall genome related indices such as average nucleotide identity and digital DNA-DNA hybridization. Phylogenetic analysis of the 16S rRNA gene is also required and can be supplemented by phylogenies of the mcrA gene and phylogenomic analysis using multiple conserved, single-copy marker genes. Additionally, it is now established that culture purity is not essential for studying prokaryotes, and description of Candidatus methanogenic taxa using single-cell or metagenomics along with other appropriate criteria is a viable alternative. The revisions to the minimal criteria proposed here by the members of the Subcommittee on the Taxonomy of Methanogenic Archaea of the International Committee on Systematics of Prokaryotes should allow for rigorous yet practical taxonomic description of these important and diverse microbes.


Assuntos
Archaea , Euryarchaeota , Archaea/genética , Filogenia , Análise de Sequência de DNA/métodos , RNA Ribossômico 16S/genética , Composição de Bases , Técnicas de Tipagem Bacteriana/métodos , DNA Bacteriano/genética , Ácidos Graxos/química , Euryarchaeota/genética , Metano/metabolismo
9.
J Hazard Mater ; 446: 130703, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36587594

RESUMO

The excessive input of nutrients into groundwater can accelerate eutrophication in associated surface water systems. This study combined hydrogeochemistry, multi isotope tracers, and microbiological data to estimate nutrient sources and the effects of groundwater-surface water interactions on the spatiotemporal variation of nutrients in groundwater connected to a large weir-regulated river in South Korea. δ11B and δ15N-NO3- values, in combination with a Bayesian mixing model, revealed that manure and sewage contributed 40 % and 25 % respectively to groundwater nitrate, and 42 % and 27 % to nitrate in surface water during the wet season. In the dry season, the source apportionment was similar for groundwater while the sewage contribution increased to 52 % of nitrate in river water. River water displayed a high correlation between NO3- concentration and cyanobacteria (Microcystis and Prochlorococcus) in the wet season. The mixing model using multiple isotopes indicated that manure-derived nutrients delivered with increased contributions of groundwater to the river during the wet season governed the occurrence of cyanobacterial blooms in the river. We postulate that the integrated approach using multi-isotopic and microbiological data is highly effective for evaluating nutrient sources and for delineating hydrological interactions between groundwater and surface water, as well as for investigating surface water quality including eutrophication in riverine and other surface water systems.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Isótopos de Nitrogênio/análise , Rios , Nitratos/análise , Esgotos , Esterco , Teorema de Bayes , Monitoramento Ambiental , Poluentes Químicos da Água/análise , China
10.
Proc Natl Acad Sci U S A ; 119(32): e2114799119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914169

RESUMO

Natural and anthropogenic wetlands are major sources of the atmospheric greenhouse gas methane. Methane emissions from wetlands are mitigated by methanotrophic bacteria at the oxic-anoxic interface, a zone of intense redox cycling of carbon, sulfur, and nitrogen compounds. Here, we report on the isolation of an aerobic methanotrophic bacterium, 'Methylovirgula thiovorans' strain HY1, which possesses metabolic capabilities never before found in any methanotroph. Most notably, strain HY1 is the first bacterium shown to aerobically oxidize both methane and reduced sulfur compounds for growth. Genomic and proteomic analyses showed that soluble methane monooxygenase and XoxF-type alcohol dehydrogenases are responsible for methane and methanol oxidation, respectively. Various pathways for respiratory sulfur oxidation were present, including the Sox-rDsr pathway and the S4I system. Strain HY1 employed the Calvin-Benson-Bassham cycle for CO2 fixation during chemolithoautotrophic growth on reduced sulfur compounds. Proteomic and microrespirometry analyses showed that the metabolic pathways for methane and thiosulfate oxidation were induced in the presence of the respective substrates. Methane and thiosulfate could therefore be independently or simultaneously oxidized. The discovery of this versatile bacterium demonstrates that methanotrophy and thiotrophy are compatible in a single microorganism and underpins the intimate interactions of methane and sulfur cycles in oxic-anoxic interface environments.


Assuntos
Bactérias , Metano , Enxofre , Bactérias/metabolismo , Metano/metabolismo , Oxirredução , Proteômica , Enxofre/metabolismo , Tiossulfatos/metabolismo
11.
ISME J ; 16(1): 272-283, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34316016

RESUMO

Nitrification, the oxidation of ammonia to nitrate, is an essential process in the biogeochemical nitrogen cycle. The first step of nitrification, ammonia oxidation, is performed by three, often co-occurring guilds of chemolithoautotrophs: ammonia-oxidizing bacteria (AOB), archaea (AOA), and complete ammonia oxidizers (comammox). Substrate kinetics are considered to be a major niche-differentiating factor between these guilds, but few AOA strains have been kinetically characterized. Here, the ammonia oxidation kinetic properties of 12 AOA representing all major cultivated phylogenetic lineages were determined using microrespirometry. Members of the genus Nitrosocosmicus have the lowest affinity for both ammonia and total ammonium of any characterized AOA, and these values are similar to previously determined ammonia and total ammonium affinities of AOB. This contrasts previous assumptions that all AOA possess much higher substrate affinities than their comammox or AOB counterparts. The substrate affinity of ammonia oxidizers correlated with their cell surface area to volume ratios. In addition, kinetic measurements across a range of pH values supports the hypothesis that-like for AOB-ammonia and not ammonium is the substrate for the ammonia monooxygenase enzyme of AOA and comammox. Together, these data will facilitate predictions and interpretation of ammonia oxidizer community structures and provide a robust basis for establishing testable hypotheses on competition between AOB, AOA, and comammox.


Assuntos
Amônia , Archaea , Amônia/metabolismo , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Nitrificação , Oxirredução , Filogenia , Microbiologia do Solo
12.
Arch Virol ; 166(11): 3239-3244, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34417873

RESUMO

In this article, we - the Bacterial Viruses Subcommittee and the Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) - summarise the results of our activities for the period March 2020 - March 2021. We report the division of the former Bacterial and Archaeal Viruses Subcommittee in two separate Subcommittees, welcome new members, a new Subcommittee Chair and Vice Chair, and give an overview of the new taxa that were proposed in 2020, approved by the Executive Committee and ratified by vote in 2021. In particular, a new realm, three orders, 15 families, 31 subfamilies, 734 genera and 1845 species were newly created or redefined (moved/promoted).


Assuntos
Vírus de Archaea/classificação , Bacteriófagos/classificação , Sociedades Científicas/organização & administração , Archaea/virologia , Bactérias/virologia
13.
J Gen Virol ; 102(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34328827

RESUMO

Members of the family Thaspiviridae have linear dsDNA genomes of 27 to 29 kbp and are the first viruses known to infect mesophilic ammonia-oxidizing archaea of the phylum Thaumarchaeota. The spindle-shaped virions of Nitrosopumilus spindle-shaped virus 1 possess short tails at one pole and measure 64±3 nm in diameter and 112±6 nm in length. This morphology is similar to that of members of the families Fuselloviridae and Halspiviridae. Virus replication is not lytic but leads to growth inhibition of the host. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Thaspiviridae, which is available at ictv.global/report/thaspiviridae.


Assuntos
Archaea/virologia , Vírus de Archaea/classificação , Vírus de DNA/classificação , Vírus de Archaea/genética , Vírus de Archaea/fisiologia , Vírus de Archaea/ultraestrutura , Vírus de DNA/genética , Vírus de DNA/fisiologia , Vírus de DNA/ultraestrutura , Genoma Viral , Especificidade de Hospedeiro , Vírion/ultraestrutura , Replicação Viral
14.
ISME J ; 15(12): 3636-3647, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34158629

RESUMO

Short-chain alkanes (SCA; C2-C4) emitted from geological sources contribute to photochemical pollution and ozone production in the atmosphere. Microorganisms that oxidize SCA and thereby mitigate their release from geothermal environments have rarely been studied. In this study, propane-oxidizing cultures could not be grown from acidic geothermal samples by enrichment on propane alone, but instead required methane addition, indicating that propane was co-oxidized by methanotrophs. "Methylacidiphilum" isolates from these enrichments did not grow on propane as a sole energy source but unexpectedly did grow on C3 compounds such as 2-propanol, acetone, and acetol. A gene cluster encoding the pathway of 2-propanol oxidation to pyruvate via acetol was upregulated during growth on 2-propanol. Surprisingly, this cluster included one of three genomic operons (pmoCAB3) encoding particulate methane monooxygenase (PMO), and several physiological tests indicated that the encoded PMO3 enzyme mediates the oxidation of acetone to acetol. Acetone-grown resting cells oxidized acetone and butanone but not methane or propane, implicating a strict substrate specificity of PMO3 to ketones instead of alkanes. Another PMO-encoding operon, pmoCAB2, was induced only in methane-grown cells, and the encoded PMO2 could be responsible for co-metabolic oxidation of propane to 2-propanol. In nature, propane probably serves primarily as a supplemental growth substrate for these bacteria when growing on methane.


Assuntos
Acetona , Oxigenases , Metano , Oxirredução , Oxigenases/genética , Verrucomicrobia
15.
J Microbiol ; 59(3): 298-310, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33624267

RESUMO

The third domain Archaea was known to thrive in extreme or anoxic environments based on cultivation studies. Recent metagenomics-based approaches revealed a widespread abundance of archaea, including ammonia-oxidizing archaea (AOA) of Thaumarchaeota in non-extreme and oxic environments. AOA alter nitrogen species availability by mediating the first step of chemolithoautotrophic nitrification, ammonia oxidation to nitrite, and are important primary producers in ecosystems, which affects the distribution and activity of other organisms in ecosystems. Thus, information on the interactions of AOA with other cohabiting organisms is a crucial element in understanding nitrogen and carbon cycles in ecosystems as well as the functioning of whole ecosystems. AOA are self-nourishing, and thus interactions of AOA with other organisms can often be indirect and broad. Besides, there are possibilities of specific and obligate interactions. Mechanisms of interaction are often not clearly identified but only inferred due to limited knowledge on the interaction factors analyzed by current technologies. Here, we overviewed different types of AOA interactions with other cohabiting organisms, which contribute to understanding AOA functions in ecosystems.


Assuntos
Amônia/metabolismo , Archaea/metabolismo , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Ecossistema , Nitrificação , Oxirredução , Filogenia
16.
Microorganisms ; 8(11)2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33147874

RESUMO

Methane-oxidizing bacteria are crucial players in controlling methane emissions. This study aimed to isolate and characterize a novel wetland methanotroph to reveal its role in the wetland environment based on genomic information. Based on phylogenomic analysis, the isolated strain, designated as B8, is a novel species in the genus Methylocystis. Strain B8 grew in a temperature range of 15 °C to 37 °C (optimum 30-35 °C) and a pH range of 6.5 to 10 (optimum 8.5-9). Methane, methanol, and acetate were used as carbon sources. Hydrogen was produced under oxygen-limited conditions. The assembled genome comprised of 3.39 Mbp and 59.9 mol% G + C content. The genome contained two types of particulate methane monooxygenases (pMMO) for low-affinity methane oxidation (pMMO1) and high-affinity methane oxidation (pMMO2). It was revealed that strain B8 might survive atmospheric methane concentration. Furthermore, the genome had various genes for hydrogenase, nitrogen fixation, polyhydroxybutyrate synthesis, and heavy metal resistance. This metabolic versatility of strain B8 might enable its survival in wetland environments.

17.
Int J Syst Evol Microbiol ; 70(10): 5520-5530, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32910751

RESUMO

A Gram-stain-negative, aerobic, non-motile and coccoid methanotroph, strain IM1T, was isolated from hot spring soil. Cells of strain IM1T were catalase-negative, oxidase-positive and displayed a characteristic intracytoplasmic membrane arrangement of type I methanotrophs. The strain possessed genes encoding both membrane-bound and soluble methane monooxygenases and grew only on methane or methanol. The strain was capable of growth at temperatures between 15 and 48 °C (optimum, 30-45 °C) and pH values between pH 4.8 and 8.2 (optimum, pH 6.2-7.0). Based on phylogenetic analysis of 16S rRNA gene and PmoA sequences, strain IM1T was demonstrated to be affiliated to the genus Methylococcus. The 16S rRNA gene sequence of this strain was most closely related to the sequences of an uncultured bacterium clone FD09 (100 %) and a partially described cultured Methylococcus sp. GDS2.4 (99.78 %). The most closely related taxonomically described strains were Methylococcus capsulatus TexasT (97.92 %), Methylococcus capsulatus Bath (97.86 %) and Methyloterricola oryzae 73aT (94.21 %). Strain IM1T shared average nucleotide identity values of 85.93 and 85.62 % with Methylococcus capsulatus strains TexasT and Bath, respectively. The digital DNA-DNA hybridization value with the closest type strain was 29.90 %. The DNA G+C content of strain IM1T was 63.3 mol% and the major cellular fatty acids were C16 : 0 (39.0 %), C16 : 1 ω7c (24.0 %), C16 : 1 ω6c (13.6 %) and C16 : 1 ω5c (12.0 %). The major ubiquinone was methylene-ubiquinone-8. On the basis of phenotypic, genetic and phylogenetic data, strain IM1T represents a novel species of the genus Methylococcus for which the name Methylococcus geothermalis sp. nov. is proposed, with strain IM1T (=JCM 33941T=KCTC 72677T) as the type strain.


Assuntos
Fontes Termais/microbiologia , Methylococcus/classificação , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Methylococcus/isolamento & purificação , Hibridização de Ácido Nucleico , Oxigenases/genética , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Ubiquinona/química
18.
Appl Environ Microbiol ; 86(20)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32826214

RESUMO

Complete ammonia-oxidizing (comammox) bacteria play key roles in environmental nitrogen cycling and all belong to the genus Nitrospira, which was originally believed to include only strict nitrite-oxidizing bacteria (sNOB). Thus, differential estimation of sNOB abundance from that of comammox Nitrospira has become problematic, since both contain nitrite oxidoreductase genes that serve as common targets for sNOB detection. Herein, we developed novel comammox Nitrospira clade A- and B-specific primer sets targeting the α-subunit of the ammonia monooxygenase gene (amoA) and a sNOB-specific primer set targeting the cyanase gene (cynS) for quantitative PCR (qPCR). The high coverage and specificity of these primers were checked by use of metagenome and metatranscriptome data sets. Efficient and specific amplification with these primers was demonstrated using various environmental samples. Using the newly designed primers, we successfully estimated the abundances of comammox Nitrospira and sNOB in samples from two chloramination-treated drinking water systems and found that, in most samples, comammox Nitrospira clade A was the dominant type of Nitrospira and also served as the primary ammonia oxidizer. Compared with other ammonia oxidizers, comammox Nitrospira had a higher abundance in process water samples in these two drinking water systems. We also demonstrated that sNOB can be readily misrepresented by an earlier method, calculated by subtracting the comammox Nitrospira abundance from the total Nitrospira abundance, especially when the comammox Nitrospira proportion is relatively high. The new primer sets were successfully applied to comammox Nitrospira and sNOB quantification, which may prove useful in understanding the roles of Nitrospira in nitrification in various ecosystems.IMPORTANCENitrospira is a dominant nitrite-oxidizing bacterium in many artificial and natural environments. The discovery of complete ammonia oxidizers in the genus Nitrospira prevents the use of previously identified primers targeting the Nitrospira 16S rRNA gene or nitrite oxidoreductase (nxr) gene for differential determination of strict nitrite-oxidizing bacteria (sNOB) in the genus Nitrospira and among comammox bacteria in this genus. We designed three novel primer sets that enabled quantification of comammox Nitrospira clades A and B and sNOB with high coverage, specificity, and accuracy in various environments. With the designed primer sets, sNOB and comammox Nitrospira were differentially estimated in drinking water systems, and we found that comammox clade A predominated over sNOB and other ammonia oxidizers in process water samples. Accurate quantification of comammox Nitrospira and sNOB by use of the newly designed primers will provide essential information for evaluating the contribution of Nitrospira to nitrification in various ecosystems.


Assuntos
Amônia/metabolismo , Bactérias/classificação , Primers do DNA/análise , Nitritos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Oxirredução
19.
ISME J ; 14(2): 335-346, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31624348

RESUMO

Consistent with the observation that ammonia-oxidizing bacteria (AOB) outnumber ammonia-oxidizing archaea (AOA) in many eutrophic ecosystems globally, AOB typically dominate activated sludge aeration basins from municipal wastewater treatment plants (WWTPs). In this study, we demonstrate that the growth of AOA strains inoculated into sterile-filtered wastewater was inhibited significantly, in contrast to uninhibited growth of a reference AOB strain. In order to identify possible mechanisms underlying AOA-specific inhibition, we show that complex mixtures of organic compounds, such as yeast extract, were highly inhibitory to all AOA strains but not to the AOB strain. By testing individual organic compounds, we reveal strong inhibitory effects of organic compounds with high metal complexation potentials implying that the inhibitory mechanism for AOA can be explained by the reduced bioavailability of an essential metal. Our results further demonstrate that the inhibitory effect on AOA can be alleviated by copper supplementation, which we observed for pure AOA cultures in a defined medium and for AOA inoculated into nitrifying sludge. Our study offers a novel mechanistic explanation for the relatively low abundance of AOA in most WWTPs and provides a basis for modulating the composition of nitrifying communities in both engineered systems and naturally occurring environments.


Assuntos
Archaea/crescimento & desenvolvimento , Cobre , Nitrificação , Águas Residuárias/microbiologia , Amônia/metabolismo , Archaea/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Oxirredução , Esgotos/microbiologia , Purificação da Água
20.
ISME J ; 13(12): 3067-3079, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31462715

RESUMO

Thaumarchaeota are responsible for a significant fraction of ammonia oxidation in the oceans and in soils that range from alkaline to acidic. However, the adaptive mechanisms underpinning their habitat expansion remain poorly understood. Here we show that expansion into acidic soils and the high pressures of the hadopelagic zone of the oceans is tightly linked to the acquisition of a variant of the energy-yielding ATPases via horizontal transfer. Whereas the ATPase genealogy of neutrophilic Thaumarchaeota is congruent with their organismal genealogy inferred from concatenated conserved proteins, a common clade of V-type ATPases unites phylogenetically distinct clades of acidophilic/acid-tolerant and piezophilic/piezotolerant species. A presumptive function of pumping cytoplasmic protons at low pH is consistent with the experimentally observed increased expression of the V-ATPase in an acid-tolerant thaumarchaeote at low pH. Consistently, heterologous expression of the thaumarchaeotal V-ATPase significantly increased the growth rate of E. coli at low pH. Its adaptive significance to growth in ocean trenches may relate to pressure-related changes in membrane structure in which this complex molecular machine must function. Together, our findings reveal that the habitat expansion of Thaumarchaeota is tightly correlated with extensive horizontal transfer of atp operons.


Assuntos
Adenosina Trifosfatases/genética , Archaea/genética , Proteínas Arqueais/genética , Transferência Genética Horizontal , Óperon , Adenosina Trifosfatases/metabolismo , Compostos de Amônio/metabolismo , Archaea/classificação , Archaea/enzimologia , Archaea/isolamento & purificação , Proteínas Arqueais/metabolismo , Ecossistema , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Oxirredução , Filogenia , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...