Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neotrop Entomol ; 51(1): 133-142, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34822112

RESUMO

The Bemisia tabaci (Gennadius) whitefly is a major economically damaging pest of many crops such as tomato (Solanum lycopersicum L.). Pesticides are widely used to control B. tabaci while the use of aromatic plants is an alternative control method. The aim of this study was to assess the B.tabaci repellent effect of wild oregano, Plectranthus amboinicus (Lour.) Spreng, a widespread aromatic plant in the West Indies. We tested three origins of wild oregano, including northern, central, and southern Martinique (French West Indies). Our results showed that all essential oils of wild oregano had either masking properties or were true repellents-the mean percentage of whiteflies present in the upper part of the still-air olfactometer was 1.3- to 1.9-fold lower than in the controls. The ethanolic solution of volatile organic compounds of wild oregano from southern Martinique also had a true repellent effect-the mean percentage of whiteflies present in the upper part of the still-air olfactometer was 1.3-fold lower than in the controls. Moreover, in a greenhouse insect-proof cage, there were 1.5 fewer adult whiteflies on tomato intercropped with wild oregano from southern Martinique than on tomato alone after 96 h exposure. Our study generated further insight into the potential of P. amboinicus for B. tabaci biocontrol on tomato crops. Wild oregano extracts were repellent to B. tabaci and could be used as a companion plant to prevent whitefly infestations on tomato crops. However, the B. tabaci behavior depends on the plant origin.


Assuntos
Hemípteros , Óleos Voláteis , Origanum , Plectranthus , Solanum lycopersicum , Animais
2.
Sci Total Environ ; 795: 148934, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34328927

RESUMO

Plant diversification through crop rotation or agroforestry is a promising way to improve sustainability of agroecosystems. Nonetheless, criteria to select the most suitable plant communities for agroecosystems diversification facing contrasting environmental constraints need to be refined. Here, we compared the impacts of 24 different plant communities on soil fertility across six tropical agroecosystems: either on highly weathered Ferralsols, with strong P limitation, or on partially weathered soils derived from volcanic material, with major N limitation. In each agroecosystem, we tested several plant communities for diversification, as compared to a matching low diversity management for their cropping system. Plant residue restitution, N, P and lignin contents were measured for each plant community. In parallel, the soil under each community was analyzed for organic C and N, inorganic N, Olsen P, soil pH and nematode community composition. Soil potential fertility was assessed with plant bioassays under greenhouse controlled climatic conditions. Overall, plant diversification had a positive effect on soil fertility across all sites, with contrasting effects depending on soil type and legumes presence in the community. Communities with legumes improved soil fertility indicators of volcanic soils, which was demonstrated through significantly higher plant biomass production in the bioassays (+18%) and soil inorganic N (+26%) compared to the low diversity management. Contrastingly, communities without legumes were the most beneficial in Ferralsols, with increases in plant biomass production in the bioassays (+39%), soil Olsen P (+46%), soil C (+26%), and pH (+5%). Piecewise structural equation models with Shipley's test revealed that plant diversification impacts on volcanic soil fertility were related to soil N availability, driven by litter N. Meanwhile, Ferralsols fertility was related to soil P availability, driven by litter P. These findings underline the importance of multifactorial and multi-sites experiments to inform trait-based frameworks used in designing optimal plant diversification in agroecological systems.


Assuntos
Fabaceae , Nematoides , Animais , Biomassa , Solo , Microbiologia do Solo
3.
Plant Dis ; 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33630689

RESUMO

Plectranthus amboinicus, commonly known as Gwo ten in the French West Indies (Martinique), is a semi-succulent perennial plant of the Lamiaceae family. This aromatic plant wich is widespread naturally throughout the tropics is of economic importance because of the therapeutic and nutritional properties attributed to its natural phytochemical compounds wich are highly valued in the pharmaceutical industry. In March 2019, wilted P. amboinicus plants intercropped with tomato plants (cv. Heatmaster) in order to reduce the insect-pest damages on tomato, were observed in a field located at the CIRAD experimental station in Lamentin, Martinique (14.663194 N, -60.999167 W). Average disease incidence of 65.74% was recorded on P. amboinicus, in 3 plots with an area of 22.04 m2. The initial symptoms observed were irregular, black, necrotic lesions on leaves. After 10 days, plants wilted and black stripes were observed on stems. Within 4 weeks, more than 50% of plants were fully wilted. Longitudinal stem sections of the wilted plants showed brown vascular discoloration. The cut stems of the wilted plants released a whitish bacterial ooze in water. In all, 108 stem sections were collected, surface disinfected with 70% ethanol and each was crushed in 2 mL of Tris-buffer, then processed for bacterial isolation by plating on modified Semi-Selective Medium from South Africa SMSA (Engelbrecht 1994). Typical Ralstonia solanacearum colonies grew on SMSA medium for 100 of the 108 samples after incubation for 48h at 28°C and were identified as Ralstonia solanacearum using diagnostic PCR with 759/760 primers (Opina et al. 1997). A phylotype-specific multiplex PCR (Fegan and Prior 2005) classified all the strains in R. solanacearum Phylotype IIA. A subset of 11 strains was selected for sequevar identification. All the strains were identified as sequevar I-39 (100% nucleotide identity with strain ANT92 - Genbank accession EF371828), by partial egl sequencing (Fegan and Prior 2005) (GenBank Accession Nos. MT314067 to MT314077). This sequevar has been reported to be widespread in the Caribbean and tropical America on vegetable crops (particularly on tomato), but not on P. amboinicus (Deberdt et al. 2014; Ramsubhag et al. 2012; Wicker et al. 2007). To fulfil Koch's postulates, a reference strain, isolated from diseased P. amboinicus (CFBP 8733, Phylotype IIA/sequevar 39), was inoculated on 30 healthy P. amboinicus plants. A common tomato cultivar grown in Martinique (cv. Heatmaster) was also inoculated on 30 plants with the same bacterial suspension. Three-weeks-old plants of both crops grown in sterilized field soil were inoculated by soil drenching with 20 ml of a calibrated suspension (108 CFU/mL). P. amboinicus and tomato plants drenched with sterile water served as a negative controls. Plants were grown in a fully controlled environment at day/night temperatures of 30-26°C ± 2°C under high relative humidity (80%). The P. amboinicus plants started wilting 9 days after inoculation, and within four weeks 60% of the P. amboinicus plants had wilted. The tomato plants started wilting 5 days after inoculation with 62% of wilted plants within four weeks. R. solanacearum was recovered from all symptomatic plants on modified SMSA medium. No symptoms were observed and no R. solanacearum strains were isolated from negative controls plants. To our knowledge, this is the first report of R. solanacearum causing bacterial wilt on Gwo ten (P. amboinicus) in Martinique. The importance of this discovery lies in the reporting of an additional host for R. solanacearum, which can be associated with other crops as tomato crop in order to reduce the abundance of insect-pests. Further studies need to be conducted to assess the precise distribution of bacterial wilt disease on P. amboinicus in Martinique and to develop a plan of action avoiding its association with R. solanacearum host crops as tomato for reducing epidemic risk.

4.
J Agric Food Chem ; 68(19): 5356-5364, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32302114

RESUMO

In Martinique, Helicoverpa zea is a common pest of tomato and is responsible for significant economic losses. To fight against H. zea proliferation and damage, corn could be used as a trap crop since H. zea larvae growth in the corn silk was inhibited by the presence of some flavonoids. However, only some corn varieties show an efficient inhibitory activity against H. zea depending on their flavonoid composition. In order to be able to select corn varieties with inhibition potential to be tested as a trap plant, a metabolomic approach was developed to compare the flavonoid composition of corn silks from resistant and nonresistant varieties. Quantitative analysis using UHPLC/TQ MRM MS associated with statistical treatments allowed the determination of the most concentrated and discriminant flavonoids of the resistant Java variety that clearly stood out, presenting a higher content in several C-glycosyl-O-glycosyl luteolin and apigenin derivatives such as maysin molecules.


Assuntos
Flavonoides/química , Mariposas/fisiologia , Extratos Vegetais/química , Zea mays/química , Animais , Comportamento Alimentar , Larva/crescimento & desenvolvimento , Larva/fisiologia , Mariposas/crescimento & desenvolvimento , Controle Biológico de Vetores , Doenças das Plantas/parasitologia , Zea mays/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...