Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38502869

RESUMO

Disturbances cause rapid changes to forests, with different disturbance types and severities creating unique ecosystem trajectories that can impact the underlying soil microbiome. Pile burning-the combustion of logging residue on the forest floor-is a common fuel reduction practice that can have impacts on forest soils analogous to those following high-severity wildfire. Further, pile burning following clear-cut harvesting can create persistent openings dominated by nonwoody plants surrounded by dense regenerating conifer forest. A paired 60-year chronosequence of burn scar openings and surrounding regenerating forest after clear-cut harvesting provides a unique opportunity to assess whether belowground microbial processes mirror aboveground vegetation during disturbance-induced ecosystem shifts. Soil ectomycorrhizal fungal diversity was reduced the first decade after pile burning, which could explain poor tree seedling establishment and subsequent persistence of herbaceous species within the openings. Fine-scale changes in the soil microbiome mirrored aboveground shifts in vegetation, with short-term changes to microbial carbon cycling functions resembling a postfire microbiome (e.g. enrichment of aromatic degradation genes) and respiration in burn scars decoupled from substrate quantity and quality. Broadly, however, soil microbiome composition and function within burn scar soils converged with that of the surrounding regenerating forest six decades after the disturbances, indicating potential microbial resilience that was disconnected from aboveground vegetation shifts. This work begins to unravel the belowground microbial processes that underlie disturbance-induced ecosystem changes, which are increasing in frequency tied to climate change.


Assuntos
Microbiota , Ecossistema , Retroalimentação , Florestas , Solo/química
2.
Environ Sci Technol ; 58(9): 4167-4180, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38385432

RESUMO

Global wildfire activity has increased since the 1970s and is projected to intensify throughout the 21st century. Wildfires change the composition and biodegradability of soil organic matter (SOM) which contains nutrients that fuel microbial metabolism. Though persistent forms of SOM often increase postfire, the response of more biodegradable SOM remains unclear. Here we simulated severe wildfires through a controlled "pyrocosm" approach to identify biodegradable sources of SOM and characterize the soil metabolome immediately postfire. Using microbial amplicon (16S/ITS) sequencing and gas chromatography-mass spectrometry, heterotrophic microbes (Actinobacteria, Firmicutes, and Protobacteria) and specific metabolites (glycine, protocatechuate, citric cycle intermediates) were enriched in burned soils, indicating that burned soils contain a variety of substrates that support microbial metabolism. Molecular formulas assigned by 21 T Fourier transform ion cyclotron resonance mass spectrometry showed that SOM in burned soil was lower in molecular weight and featured 20 to 43% more nitrogen-containing molecular formulas than unburned soil. We also measured higher water extractable organic carbon concentrations and higher CO2 efflux in burned soils. The observed enrichment of biodegradable SOM and microbial heterotrophs demonstrates the resilience of these soils to severe burning, providing important implications for postfire soil microbial and plant recolonization and ecosystem recovery.


Assuntos
Incêndios , Incêndios Florestais , Ecossistema , Solo/química , Espectrometria de Massas , Carbono/metabolismo
3.
Nat Microbiol ; 7(9): 1419-1430, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36008619

RESUMO

Forest soil microbiomes have crucial roles in carbon storage, biogeochemical cycling and rhizosphere processes. Wildfire season length, and the frequency and size of severe fires have increased owing to climate change. Fires affect ecosystem recovery and modify soil microbiomes and microbially mediated biogeochemical processes. To study wildfire-dependent changes in soil microbiomes, we characterized functional shifts in the soil microbiota (bacteria, fungi and viruses) across burn severity gradients (low, moderate and high severity) 1 yr post fire in coniferous forests in Colorado and Wyoming, USA. We found severity-dependent increases of Actinobacteria encoding genes for heat resistance, fast growth, and pyrogenic carbon utilization that might enhance post-fire survival. We report that increased burn severity led to the loss of ectomycorrhizal fungi and less tolerant microbial taxa. Viruses remained active in post-fire soils and probably influenced carbon cycling and biogeochemistry via turnover of biomass and ecosystem-relevant auxiliary metabolic genes. Our genome-resolved analyses link post-fire soil microbial taxonomy to functions and reveal the complexity of post-fire soil microbiome activity.


Assuntos
Microbiota , Incêndios Florestais , Carbono , Florestas , Solo
4.
Environ Sci Process Impacts ; 24(10): 1661-1677, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36004537

RESUMO

Wildfires, which are increasing in frequency and severity in the western U.S., impact water quality through increases in erosion, and transport of nutrients and metals. Meanwhile, beaver populations have been increasing since the early 1900s, and the ponds they create slow or impound hydrologic and elemental fluxes, increase soil saturation, and have a high potential to transform redox active elements (e.g., oxygen, nitrogen, sulfur, and metals). However, it remains unknown how the presence of beaver ponds in burned watersheds may impact retention and transformation of chemical constituents originating in burned uplands (e.g., pyrogenic dissolved organic matter; pyDOM) and the consequences for downstream water quality. Here, we investigate the impact of beaver ponds on the chemical properties and molecular composition of dissolved forms of C and N, and the microbial functional potential encoded within these environments. The chemistry and microbiology of surface water and sediment changed along a stream sequence starting upstream of fire and flowing through multiple beaver ponds and interconnecting stream reaches within a burned high-elevation forest watershed. The relative abundance of N-containing compounds increased in surface water of the burned beaver ponds, which corresponded to lower C/N and O/C, and higher aromaticity as characterized by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The resident microbial communities lack the capacity to process such aromatic pyDOM, though genomic analyses demonstrate their potential to metabolize various compounds in the anaerobic sediments of the beaver ponds. Collectively, this work highlights the role of beaver ponds as biological "hotspots" with unique biogeochemistry in fire-impacted systems.


Assuntos
Nitrogênio , Lagoas , Animais , Lagoas/química , Nitrogênio/análise , Carbono/química , Roedores , Solo , Oxigênio/análise , Enxofre
5.
Appl Environ Microbiol ; 88(13): e0034322, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35703548

RESUMO

Wildfires are a perennial event globally, and the biogeochemical underpinnings of soil responses at relevant spatial and temporal scales are unclear. Soil biogeochemical processes regulate plant growth and nutrient losses that affect water quality, yet the response of soil after variable intensity fire is difficult to explain and predict. To address this issue, we examined two wildfires in Colorado, United States, across the first and second postfire years and leveraged statistical learning (SL) to predict and explain biogeochemical responses. We found that SL predicts biogeochemical responses in soil after wildfire with surprising accuracy. Of the 13 biogeochemical analytes analyzed in this study, 9 are best explained with a hybrid microbiome + biogeochemical SL model. Biogeochemical-only models best explain 3 features, and 1 feature is explained equally well with the hybrid and biogeochemical-only models. In some cases, microbiome-only SL models are also effective (such as predicting NH4+). Whenever a microbiome component is employed, selected features always involve uncommon soil microbiota (i.e., the "rare biosphere" [existing at <1% mean relative abundance]). Here, we demonstrate that SL paired with DNA sequence and biogeochemical data predicts environmental features in postfire soils, although this approach could likely be applied to any biogeochemical system. IMPORTANCE Soil biogeochemical processes are critical to plant growth and water quality and are substantially disturbed by wildfire. However, soil responses to fire are difficult to predict. To address this issue, we developed a large environmental data set that tracks postfire changes in soil and used statistical learning (SL) to build models that exploit complex data to make predictions about biogeochemical responses. Here, we show that SL depends upon uncommon microbiota in soil (the "rare biosphere") to make surprisingly accurate predictions about soil biogeochemical responses to wildfire. Using SL to explain variation in a natively chaotic environmental system is mechanism independent. Likely, the approach that we describe for combining SL with microbiome and biogeochemical parameters has practical applications across a range of issues in the environmental sciences where predicting responses would be useful.


Assuntos
Incêndios , Microbiota , Incêndios Florestais , Solo , Qualidade da Água
6.
Ecol Appl ; 30(3): e02059, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31849139

RESUMO

The persistence and fall rate of snags (standing dead trees) generated during bark beetle outbreaks have consequences for the behavior, effects, and suppression of potential wildfires, hazard tree and timber salvage operations, wildlife habitat, and numerous ecosystem processes. However, post-beetle snagfall dynamics are poorly understood in most forest types. We tagged standing live and dead lodgepole pine (Pinus contorta), subalpine fir (Abies lasiocarpa), and Engelmann spruce (Picea engelmannii), including beetle-killed pine snags following the peak of a recent mountain pine bark beetle outbreak in watersheds at the Fraser Experimental Forest in northcentral Colorado and sampled snagfall 10 and 12 years later. Bark beetle attacks began in 2003, peaked by 2006, and killed 78% of overstory lodgepole pine in 133 plots distributed across a range of stand and site conditions. Of those snags, only 17% fell between 2007 and 2018. Most snags broke at ground level, due to butt rot, and were oriented downhill. In contrast, snags that tipped up or snapped off above the ground were oriented with the prevailing winds. Equal numbers of snags fell singly and in multiple-tree groups, and equal numbers remained elevated rather than in contact with the ground. Lodgepole pine snagfall was 1.6-times higher on steep slopes (>40%) where dead pine density was higher, compared to flatter sites. Based on our findings and previous research, we estimate that one-half the beetle-killed lodgepole pine in high-elevation forests such as those at Fraser may fall within 15-20 yr of beetle infestation, but that some pine snags are likely to persist for decades longer. Post-outbreak snagfall dynamics create a multiple-decade legacy of bark beetle outbreaks that will persist longer in high-elevation compared to lower-elevation forests.


Assuntos
Besouros , Pinus , Animais , Colorado , Ecossistema , Florestas , Casca de Planta
7.
Acc Chem Res ; 52(5): 1234-1244, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31059225

RESUMO

Wildfires are a natural part of most forest ecosystems, but due to changing climatic and environmental conditions, they have become larger, more severe, and potentially more damaging. Forested watersheds vulnerable to wildfire serve as drinking water supplies for many urban and rural communities. The highly variable nature of wildfire behavior combined with spatially complex patterns in vegetation, landscape, and hydrologic factors create uncertainty surrounding the postfire effects on water supplies. Wildfires often cause dramatic changes in forest vegetation structure and soil conditions, and alter the watershed processes that control streamflow, soil erosion, nutrient export, and downstream water chemistry. The authors' work centers on field and laboratory studies to advance knowledge of postfire changes in soil and water chemical composition that influence drinking water treatment. High intensity postfire rainstorms typically increase runoff that erodes ash and soil from burned landscapes and dramatically elevates turbidity, nutrient, and dissolved organic carbon (DOC) levels in surface waters, which can cause short-term challenges for water providers. There is also growing evidence that water quality impacts can persist after high severity fires due to slow vegetative recovery, and nitrogen and DOC have remained elevated for 15 years following high severity fire. Low-moderate temperatures during wildfire may also influence water quality. Research by the authors showed that the solubility of organic matter, and C and N released from soils increased following soil heating at temperatures ≤ 350 °C. Further, the water extracted organic matter from soils heated at 225-350 °C included higher proportions of condensed aromatic structures, such as black carbon and black nitrogen. Short-term postfire water quality degradation following high intensity rainstorms can force water treatment plants to shut down or can significantly challenge treatment process performance. Extreme turbidity and high DOC in poststorm water, coupled with compositional organic matter changes, reduced the coagulation efficiency of postfire water supplies. Field and lab-based studies documented the formation of small, aromatic soluble compounds during wildfire that contribute to inefficient DOC removal from postfire stormwater. Due to increased postfire DOC concentrations, and poor treatability of poststorm runoff, toxic disinfection byproduct (DBP) formation increased during water treatment. Exceedance of drinking water standards for the carbonaceous DBPs, trihalomethanes and haloacetic acids, may present a critical management concern for water providers following wildfires. Further, postfire formation of nitrogen compounds and increased nitrogenous DBP precursors for haloacetonitriles and chloropicrin were discovered. N-DBPs pose a public health concern due to their toxicity, and water providers should be aware of potential increases in N-DBP formation following fire. Evidence from the authors' studies demonstrates that even partially burned watersheds and wildfires burning at moderate temperature can have significant, lasting effects on C and N exports, source water quality, drinking water treatability, and DBP formation. Both short- and long-term postfire water quality impacts can create challenges for drinking water providers as they confront variability in supply and treatability. Communities, forest managers, and potable water providers will need to adapt to more frequent, destructive wildfires and anticipate greater variability in water quality.


Assuntos
Água Potável/química , Água Doce/química , Poluentes Químicos da Água/química , Qualidade da Água , Incêndios Florestais , Carbono/análise , Carbono/química , Água Potável/análise , Florestas , Nitrogênio/análise , Nitrogênio/química , Poluentes Químicos da Água/análise , Purificação da Água
8.
J Environ Qual ; 48(2): 305-313, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30951119

RESUMO

Recent extensive forest mortality and subsequent salvage logging may threaten the water supply from headwater catchments in western North America. Land managers confronting current insect outbreaks and projected increases in forest disturbance require information about the potential water quality consequences of these changes. This study is a hillslope-scale evaluation of soil N and C leaching in lodgepole pine forests that have experienced 80% overstory tree mortality. I measured extractable inorganic and ion resin exchangeable-N forms, in situ net mineralization and nitrification, and leaching in upland and riparian forests with the following treatment combinations: (i) uncut upland with uncut riparian, (ii) harvested upland with uncut riparian buffer, and (iii) harvested upland with harvested riparian. This design permitted comparison of N cycling and leaching in 30-m-wide riparian buffers and a riparian fuel break designed to remove canopy fuels and reduce wildfire concerns in areas with extensive bark beetle infestation. Harvesting increased NO-N, total dissolved N, and dissolved organic C leachate concentrations in upland landscapes but had little effect on net N transformations. Leachate N and C concentrations were 1.5 times higher in riparian buffers downslope of harvested uplands than those in riparian zones downslope of uncut uplands. Riparian forest harvest increased N leaching relative to uncut buffers, although postharvest concentrations remained well below regional water quality standards. Thus, while this study provides evidence that N leaching from dead buffers is low, it also suggests that riparian fuel reduction may complement wildfire mitigation objectives without compromising watershed protection.


Assuntos
Besouros , Monitoramento Ambiental , Agricultura Florestal , Nitrogênio/análise , Poluentes do Solo/análise , Animais , Florestas , Pinus , Solo
9.
Scientifica (Cairo) ; 2017: 4758316, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28321358

RESUMO

Wildfire is a natural disturbance, though elemental losses and changes that occur during combustion and post-fire erosion can have long-term impacts on soil properties, ecosystem productivity, and watershed condition. Here we evaluate the potential of forest residue-based materials to rehabilitate burned soils. We compare soil nutrient and water availability, and plant recovery after application of 37 t ha-1 of wood mulch, 20 t ha-1 of biochar, and the combination of the two amendments with untreated, burned soils. We also conducted a greenhouse trial to examine how biochar influenced soil nutrient and water content under two wetting regimes. The effects of wood mulch on plant-available soil N and water content were significant and seasonally consistent during the three-year field study. Biochar applied alone had few effects under field conditions, but significantly increased soil pH, Ca, P, and water in the greenhouse. The mulched biochar treatment had the greatest effects on soil N and water availability and increased cover of the most abundant native plant. We found that rehabilitation treatments consisting of forest residue-based products have potential to enhance soil N and water dynamics and plant recovery following severe wildfire and may be justified where erosion risk or water supply protection are crucial.

10.
Glob Chang Biol ; 22(7): 2318-28, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26403995

RESUMO

Trees alter their use and allocation of nutrients in response to drought, and changes in soil nutrient cycling and trace gas flux (N2 O and CH4 ) are observed when experimental drought is imposed on forests. In extreme droughts, trees are increasingly susceptible to attack by pests and pathogens, which can lead to major changes in nutrient flux to the soil. Extreme droughts often lead to more common and more intense forest fires, causing dramatic changes in the nutrient storage and loss from forest ecosystems. Changes in the future manifestation of drought will affect carbon uptake and storage in forests, leading to feedbacks to the Earth's climate system. We must improve the recognition of drought in nature, our ability to manage our forests in the face of drought, and the parameterization of drought in earth system models for improved predictions of carbon uptake and storage in the world's forests.


Assuntos
Ciclo do Carbono , Secas , Florestas , Mudança Climática , Ecossistema , Árvores
11.
Proc Natl Acad Sci U S A ; 110(5): 1756-60, 2013 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-23319612

RESUMO

A current pine beetle infestation has caused extensive mortality of lodgepole pine (Pinus contorta) in forests of Colorado and Wyoming; it is part of an unprecedented multispecies beetle outbreak extending from Mexico to Canada. In United States and European watersheds, where atmospheric deposition of inorganic N is moderate to low (<10 kg⋅ha⋅y), disturbance of forests by timber harvest or violent storms causes an increase in stream nitrate concentration that typically is close to 400% of predisturbance concentrations. In contrast, no significant increase in streamwater nitrate concentrations has occurred following extensive tree mortality caused by the mountain pine beetle in Colorado. A model of nitrate release from Colorado watersheds calibrated with field data indicates that stimulation of nitrate uptake by vegetation components unaffected by beetles accounts for significant nitrate retention in beetle-infested watersheds. The combination of low atmospheric N deposition (<10 kg⋅ha⋅y), tree mortality spread over multiple years, and high compensatory capacity associated with undisturbed residual vegetation and soils explains the ability of these beetle-infested watersheds to retain nitrate despite catastrophic mortality of the dominant canopy tree species.


Assuntos
Besouros/fisiologia , Nitratos/metabolismo , Pinus/parasitologia , Árvores/parasitologia , Animais , Colorado , Ecossistema , Monitoramento Ambiental/métodos , Monitoramento Ambiental/estatística & dados numéricos , Água Doce/análise , Geografia , Interações Hospedeiro-Parasita , Ciclo do Nitrogênio , Pinus/metabolismo , Rios/química , Solo/análise , Fatores de Tempo , Árvores/metabolismo , Wyoming
12.
Environ Manage ; 46(1): 91-100, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20499233

RESUMO

Two decades of uncharacteristically severe wildfires have caused government and private land managers to actively reduce hazardous fuels to lessen wildfire severity in western forests, including riparian areas. Because riparian fuel treatments are a fairly new management strategy, we set out to document their frequency and extent on federal lands in the western U.S. Seventy-four USDA Forest Service Fire Management Officers (FMOs) in 11 states were interviewed to collect information on the number and characteristics of riparian fuel reduction treatments in their management district. Just under half of the FMOs surveyed (43%) indicated that they were conducting fuel reduction treatments in riparian areas. The primary management objective listed for these projects was either fuel reduction (81%) or ecological restoration and habitat improvement (41%), though multiple management goals were common (56%). Most projects were of small extent (93% < 300 acres), occurred in the wildland-urban interface (75%), and were conducted in ways to minimize negative impacts on species and habitats. The results of this survey suggest that managers are proceeding cautiously with treatments. To facilitate project planning and implementation, managers recommended early coordination with resource specialists, such as hydrologists and fish and wildlife biologists. Well-designed monitoring of the consequences of riparian fuel treatments on fuel loads, fire risk, and ecological effects is needed to provide a scientifically-defensible basis for the continued and growing implementation of these treatments.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Incêndios/prevenção & controle , Agricultura Florestal/métodos , Monitoramento Ambiental , Programas Governamentais , Noroeste dos Estados Unidos , Rios , Sudoeste dos Estados Unidos , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...