Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 9: 1002187, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388927

RESUMO

While worldwide efforts for improving COVID-19 vaccines are currently considered a top priority, the role of the genetic variants responsible for virus receptor protein stability is less studied. Angiotensin-converting enzyme-2 is the primary target of the SARS-CoV-1/SARS-CoV-2 spike (S) glycoprotein, enabling entry into the human body. Here, we applied computational saturation mutagenesis approaches to determine the folding energy caused by all possible mutations in ACE2 proteins within ACE2 - SARS-CoV-1-S/ACE2 - SARS-CoV-2-S complexes. We observed ACE2 mutations at residue D350 causing the most stabilizing effects on the protein. In addition, we identified ACE2 genetic variations in African Americans (rs73635825, rs766996587, and rs780574871), Latino Americans (rs924799658), and both groups (rs4646116 and rs138390800) affecting stability in the ACE2 - SARS-CoV-2-S complex. The findings in this study may aid in targeting the design of stable neutralizing peptides for treating minority patients.

2.
Front Mol Biosci ; 9: 933553, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188214

RESUMO

Middle East Respiratory Syndrome Coronavirus (MERS-CoV) causes severe pneumonia-like symptoms and is still pose a significant threat to global public health. A key component in the virulence of MERS-CoV is the Spike (S) protein, which binds with the host membrane receptor dipeptidyl peptidase 4 (DPP4). The goal of the present investigation is to examine the effects of missense mutations in the MERS-CoV S protein on protein stability and binding affinity with DPP4 to provide insight that is useful in developing vaccines to prevent coronavirus infection. We utilized a saturation mutagenesis approach to simulate all possible mutations in the MERS-CoV full-length S, S Receptor Binding Domain (RBD) and DPP4. We found the mutations in MERS-CoV S protein residues, G552, C503, C526, N468, G570, S532, S451, S419, S465, and S435, affect protein stability. We identified key residues, G538, E513, V555, S557, L506, L507, R511, M452, D537, and S454 in the S protein RBD region are important in the binding of MERS-CoV S protein to the DPP4 receptor. We investigated the effects of MERS-CoV S protein viral mutations on protein stability and binding affinity. In addition, we studied all DPP4 mutations and found the functional substitution R336T weakens both DPP4 protein stability and S-DPP4 binding affinity. We compared the S protein structures of MERS-CoV, SARS-CoV, and SARS-CoV-2 viruses and identified the residues like C526, C383, and N468 located in equivalent positions of these viruses have effects on S protein structure. These findings provide further information on how mutations in coronavirus S proteins effect protein function.

3.
Genes (Basel) ; 13(5)2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35627176

RESUMO

Neurexin-1 (NRXN1) is a membrane protein essential in synapse formation and cell signaling as a cell-adhesion molecule and cell-surface receptor. NRXN1 and its binding partner neuroligin have been associated with deficits in cognition. Recent genetics research has linked NRXN1 missense mutations to increased risk for brain disorders, including schizophrenia (SCZ) and autism spectrum disorder (ASD). Investigation of the structure-function relationship in NRXN1 has proven difficult due to a lack of the experimental full-length membrane protein structure. AlphaFold, a deep learning-based predictor, succeeds in high-quality protein structure prediction and offers a solution for membrane protein model construction. In the study, we applied a computational saturation mutagenesis method to analyze the systemic effects of missense mutations on protein functions in a human NRXN1 structure predicted from AlphaFold and an experimental Bos taurus structure. The folding energy changes were calculated to estimate the effects of the 29,540 mutations of AlphaFold model on protein stability. The comparative study on the experimental and computationally predicted structures shows that these energy changes are highly correlated, demonstrating the reliability of the AlphaFold structure for the downstream bioinformatics analysis. The energy calculation revealed that some target mutations associated with SCZ and ASD could make the protein unstable. The study can provide helpful information for characterizing the disease-causing mutations and elucidating the molecular mechanisms by which the variations cause SCZ and ASD. This methodology could provide the bioinformatics protocol to investigate the effects of target mutations on multiple AlphaFold structures.


Assuntos
Transtorno do Espectro Autista , Proteínas de Ligação ao Cálcio/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Animais , Transtorno do Espectro Autista/genética , Bovinos , Humanos , Proteínas de Membrana/genética , Mutagênese , Mutação , Proteínas do Tecido Nervoso/genética , Reprodutibilidade dos Testes
4.
Front Microbiol ; 13: 845559, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444632

RESUMO

COVID-19, caused by SARS-CoV-2, is a systemic illness due to its multiorgan effects in patients. The disease has a detrimental impact on respiratory and cardiovascular systems. One early symptom of infection is anosmia or lack of smell; this implicates the involvement of the olfactory bulb in COVID-19 disease and provides a route into the central nervous system. However, little is known about how SARS-CoV-2 affects neurological or psychological symptoms. SARS-CoV-2 exploits host receptors that converge on pathways that impact psychological symptoms. This systemic review discusses the ways involved by coronavirus infection and their impact on mental health disorders. We begin by briefly introducing the history of coronaviruses, followed by an overview of the essential proteins to viral entry. Then, we discuss the downstream effects of viral entry on host proteins. Finally, we review the literature on host factors that are known to play critical roles in neuropsychiatric symptoms and mental diseases and discuss how COVID-19 could impact mental health globally. Our review details the host factors and pathways involved in the cellular mechanisms, such as systemic inflammation, that play a significant role in the development of neuropsychological symptoms stemming from COVID-19 infection.

5.
Front Mol Biosci ; 8: 784303, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957216

RESUMO

Severe Acute respiratory syndrome coronavirus (SARS-CoV-1) attaches to the host cell surface to initiate the interaction between the receptor-binding domain (RBD) of its spike glycoprotein (S) and the human Angiotensin-converting enzyme (hACE2) receptor. SARS-CoV-1 mutates frequently because of its RNA genome, which challenges the antiviral development. Here, we per-formed computational saturation mutagenesis of the S protein of SARS-CoV-1 to identify the residues crucial for its functions. We used the structure-based energy calculations to analyze the effects of the missense mutations on the SARS-CoV-1 S stability and the binding affinity with hACE2. The sequence and structure alignment showed similarities between the S proteins of SARS-CoV-1 and SARS-CoV-2. Interestingly, we found that target mutations of S protein amino acids generate similar effects on their stabilities between SARS-CoV-1 and SARS-CoV-2. For example, G839W of SARS-CoV-1 corresponds to G857W of SARS-CoV-2, which decrease the stability of their S glycoproteins. The viral mutation analysis of the two different SARS-CoV-1 isolates showed that mutations, T487S and L472P, weakened the S-hACE2 binding of the 2003-2004 SARS-CoV-1 isolate. In addition, the mutations of L472P and F360S destabilized the 2003-2004 viral isolate. We further predicted that many mutations on N-linked glycosylation sites would increase the stability of the S glycoprotein. Our results can be of therapeutic importance in the design of antivirals or vaccines against SARS-CoV-1 and SARS-CoV-2.

7.
Brief Bioinform ; 22(2): 1239-1253, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33006605

RESUMO

The spike (S) glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the binding to the permissive cells. The receptor-binding domain (RBD) of SARS-CoV-2 S protein directly interacts with the human angiotensin-converting enzyme 2 (ACE2) on the host cell membrane. In this study, we used computational saturation mutagenesis approaches, including structure-based energy calculations and sequence-based pathogenicity predictions, to quantify the systemic effects of missense mutations on SARS-CoV-2 S protein structure and function. A total of 18 354 mutations in S protein were analyzed, and we discovered that most of these mutations could destabilize the entire S protein and its RBD. Specifically, residues G431 and S514 in SARS-CoV-2 RBD are important for S protein stability. We analyzed 384 experimentally verified S missense variations and revealed that the dominant pandemic form, D614G, can stabilize the entire S protein. Moreover, many mutations in N-linked glycosylation sites can increase the stability of the S protein. In addition, we investigated 3705 mutations in SARS-CoV-2 RBD and 11 324 mutations in human ACE2 and found that SARS-CoV-2 neighbor residues G496 and F497 and ACE2 residues D355 and Y41 are critical for the RBD-ACE2 interaction. The findings comprehensively provide potential target sites in the development of drugs and vaccines against COVID-19.


Assuntos
Mutação de Sentido Incorreto , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/metabolismo , COVID-19/virologia , Humanos , Ligação Proteica , SARS-CoV-2/metabolismo , Termodinâmica
8.
J Transl Genet Genom ; 3(1): 1-20, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33981965

RESUMO

Schizophrenia is a highly heritable psychiatric disorder that affects 1% of the population. Genome-wide association studies have identified common variants in candidate genes associated with schizophrenia, but the genetics mechanisms of this disorder have not yet been elucidated. The discovery of rare genetic variants that contribute to schizophrenia symptoms promises to help explain the missing heritability of the disease. Next generation sequencing techniques are revolutionizing the field of psychiatric genetics. Various statistical approaches have been developed for rare variant association testing in case-control and family studies. Targeted resequencing, whole exome sequencing and whole genome sequencing combined with these computational tools are used for the discovery of rare genetic variations in schizophrenia. The findings provide useful information for characterizing the rare mutations and elucidating the genetic mechanisms by which the variants cause schizophrenia.

9.
Toxicol Sci ; 125(1): 233-47, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21987461

RESUMO

The wild-type (WT) Cpr(lox/lox) (cytochrome P(450) oxidoreductase, Cpr) mouse is an ideal model to assess the contribution of P(450) enzymes to the metabolic activation and disposition of environmental xenobiotics. In the present study, we examined the effect of in utero exposure to benzo(a)pyrene [B(a)P] aerosol on Sp4 and N-methyl-D-aspartate (NMDA)-dependent systems as well as a resulting behavioral phenotype (object discrimination) in Cpr offspring. Results from in utero exposure of WT Cpr(lox/lox) mice were compared with in utero exposed brain-Cpr-null offspring mice. Null mice were used as they do not express brain cytochrome P(450)1B1-associated NADPH oxidoreductase (CYP1B1-associated NADPH oxidoreductase), thus reducing their capacity to produce neural B(a)P metabolites. Subsequent to in utero (E14-E17) exposure to B(a)P (100 µg/m(3)), Cpr(lox/lox) offspring exhibited: (1) elevated B(a)P metabolite and F(2)-isoprostane neocortical tissue burdens, (2) elevated concentrations of cortical glutamate, (3) premature developmental expression of Sp4, (4) decreased subunit ratios of NR2B:NR2A, and (5) deficits in a novelty discrimination phenotype monitored to in utero exposed brain-Cpr-null offspring. Collectively, these findings suggest that in situ generation of metabolites by CYP1B1-associated NADPH oxidoreductase promotes negative effects on NMDA-mediated signaling processes during the period when synapses are first forming as well as effects on a subsequent behavioral phenotype.


Assuntos
Comportamento Animal/efeitos dos fármacos , Benzo(a)pireno/toxicidade , Encéfalo/efeitos dos fármacos , Aprendizagem por Discriminação/efeitos dos fármacos , Exposição por Inalação , NADPH-Ferri-Hemoproteína Redutase/fisiologia , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Aerossóis , Animais , Benzo(a)pireno/farmacocinética , Encéfalo/embriologia , Encéfalo/enzimologia , Encéfalo/fisiopatologia , Feminino , Ácido Glutâmico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH-Ferri-Hemoproteína Redutase/genética , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Neurônios/metabolismo , Oxirredução , Tamanho da Partícula , Fenótipo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/enzimologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/psicologia , Receptores de N-Metil-D-Aspartato/genética , Fuligem/toxicidade , Distribuição Tecidual
10.
Toxicol Sci ; 118(2): 625-34, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20889680

RESUMO

Gene by environment interactions (G × E) are thought to underlie neurodevelopmental disorder, etiology, neurodegenerative disorders, including the multiple forms of autism spectrum disorder. However, there is limited biological information, indicating an interaction between specific genes and environmental components. The present study focuses on a major component of airborne pollutants, polycyclic aromatic hydrocarbons (PAHs), such as benzo(a)pyrene [B(a)P], which negatively impacts cognitive development in children who have been exposed in utero. In our study, prenatal exposure of Cpr(lox/lox) timed-pregnant dams to B(a)P (0, 150, 300, and 600 µg/kg body weight via oral gavage) on embryonic day (E14-E17) consistent with our susceptibility-exposure paradigm was combined with the analysis of a replicated autism risk gene, the receptor tyrosine kinase, Met. The results demonstrate a dose-dependent increase in B(a)P metabolite generation in B(a)P-exposed Cpr(lox/lox) offspring. Additionally, a sustained persistence of hydroxy metabolites during the onset of synapse formation was noted, corresponding to the peak of Met expression. Prenatal B(a)P exposure also downregulated Met RNA and protein levels and dysregulated normal temporal patterns of expression during synaptogenesis. Consistent with these data, transcriptional cell-based assays demonstrated that B(a)P exposure directly reduces human MET promoter activity. Furthermore, a functional readout of in utero B(a)P exposure showed a robust reduction in novel object discrimination in B(a)P-exposed Cpr(lox/lox) offspring. These results confirm the notion that common pollutants, such as the PAH B(a)P, can have a direct negative impact on the regulated developmental expression of an autism risk gene with associated negative behavioral learning and memory outcomes.


Assuntos
Poluentes Atmosféricos/toxicidade , Comportamento Animal/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Embrião de Mamíferos/efeitos dos fármacos , Exposição Materna/efeitos adversos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Administração Oral , Poluentes Atmosféricos/metabolismo , Animais , Transtorno Autístico , Células Cultivadas , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Cognição/efeitos dos fármacos , Aprendizagem por Discriminação/efeitos dos fármacos , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Embrião de Mamíferos/embriologia , Comportamento Exploratório/efeitos dos fármacos , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , RNA Mensageiro/metabolismo
11.
Neurosci Res ; 65(2): 160-5, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19559060

RESUMO

Methamphetamine (METH) is a psychostimulant that causes damage to dopamine (DA) axons and to non-monoaminergic neurons in the brain. The aim of the present study was to investigate short- and long-term effects of neurotoxic METH treatment on novelty-induced locomotor activity in mice. Male BALB/c mice, 12-14 weeks old, were injected with saline or METH (i.p., 7.5 mg/kg x 4 times, every 2 h). Behavior and neurotoxic effects were assessed at 10 days, 3 and 5 months following drug treatment. METH administration caused marked decreases in DA levels in the mouse striatum and cortex at 10 days post-drug. However, METH did not induce any changes in novelty-induced locomotor activity. At 3 and 5 months after treatment METH-exposed mice showed significant recovery of DA levels in the striatum and cortex. In contrast, these animals demonstrated significant decreases in locomotor activity at 5 months in comparison to aged-matched control mice. Further assessment of METH toxicity using TUNEL staining showed that the drug induced increased cell death in the striatum and cortex at 3 days after administration. Taken together, these data suggest that delayed deficits in novelty-induced locomotor activity observed in METH-exposed animals are not due to neurodegeneration of DA terminals but to combined effects of METH and age-dependent dysfunction of non-DA intrinsic striatal and/or corticostriatal neurons.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/fisiopatologia , Encéfalo/efeitos dos fármacos , Dopamina/metabolismo , Comportamento Exploratório/efeitos dos fármacos , Metanfetamina/toxicidade , Atividade Motora/efeitos dos fármacos , Fatores Etários , Envelhecimento/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Estimulantes do Sistema Nervoso Central/toxicidade , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/fisiopatologia , Modelos Animais de Doenças , Comportamento Exploratório/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Atividade Motora/fisiologia , Degeneração Neural/induzido quimicamente , Degeneração Neural/metabolismo , Degeneração Neural/fisiopatologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...