Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
1.
Nutrients ; 16(4)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38398835

RESUMO

The probiotic Limosilactobacillus reuteri DSM 17938 produces anti-inflammatory effects in scurfy (SF) mice, a model characterized by immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (called IPEX syndrome in humans), caused by regulatory T cell (Treg) deficiency and is due to a Foxp3 gene mutation. Considering the pivotal role of lipids in autoimmune inflammatory processes, we investigated alterations in the relative abundance of lipid profiles in SF mice (± treatment with DSM 17938) compared to normal WT mice. We also examined the correlation between plasma lipids and gut microbiota and circulating inflammatory markers. We noted a significant upregulation of plasma lipids associated with autoimmune disease in SF mice, many of which were downregulated by DSM 17938. The upregulated lipids in SF mice demonstrated a significant correlation with gut bacteria known to be implicated in the pathogenesis of various autoimmune diseases. Chronic hepatitis in SF livers responded to DSM 17938 treatment with a reduction in hepatic inflammation. Altered gene expression associated with lipid metabolism and the positive correlation between lipids and inflammatory cytokines together suggest that autoimmunity leads to dyslipidemia with impaired fatty acid oxidation in SF mice. Probiotics are presumed to contribute to the reduction of lipids by reducing inflammatory pathways.


Assuntos
Doenças Autoimunes , Limosilactobacillus reuteri , Probióticos , Humanos , Camundongos , Animais , Linfócitos T Reguladores , Hepatite Crônica/metabolismo , Hepatite Crônica/patologia , Probióticos/uso terapêutico , Lipídeos , Fatores de Transcrição Forkhead/genética
2.
Life Sci ; 337: 122357, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38123016

RESUMO

The gut-brain axis is gaining more attention in neurodevelopmental disorders, especially autism spectrum disorder (ASD). Many factors can influence microbiota in early life, including host genetics and perinatal events (infections, mode of birth/delivery, medications, nutritional supply, and environmental stressors). The gut microbiome can influence blood-brain barrier (BBB) permeability, drug bioavailability, and social behaviors. Developing microbiota-based interventions such as probiotics, gastrointestinal (GI) microbiota transplantation, or metabolite supplementation may offer an exciting approach to treating ASD. This review highlights that RNA sequencing, metabolomics, and transcriptomics data are needed to understand how microbial modulators can influence ASD pathophysiology. Due to the substantial clinical heterogeneity of ASD, medical caretakers may be unlikely to develop a broad and effective general gut microbiota modulator. However, dietary modulation followed by administration of microbiota modulators is a promising option for treating ASD-related behavioral and gastrointestinal symptoms. Future work should focus on the accuracy of biomarker tests and developing specific psychobiotic agents tailored towards the gut microbiota seen in ASD patients, which may include developing individualized treatment options.


Assuntos
Transtorno do Espectro Autista , Gastroenteropatias , Microbioma Gastrointestinal , Microbiota , Humanos , Eixo Encéfalo-Intestino , Transtorno do Espectro Autista/terapia , Microbioma Gastrointestinal/fisiologia , Gastroenteropatias/tratamento farmacológico
3.
Res Sq ; 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37066419

RESUMO

Probiotic Limosilactobacillus reuteri DSM 17938 (DSM 17938) prolonges the survival of Treg-deficient scurfy (SF) mice and reduces multiorgan inflammation by a process requiring adenosine receptor 2A (A 2A ) on T cells. We hypothesized that L. reuteri -derived ecto-5'-nucleotidase (ecto-5'NT) activity acts to generate adenosine, which may be a central mediator for L. reuteri protection in SF mice. We evaluated DSM 17938-5'NT activity and the associated adenosine and inosine levels in plasma, gut and liver of SF mice. We examined orally fed DSM 17938, DSM 17938Δ5NT (with a deleted 5'NT gene), and DSM 32846 (BG-R46) (a naturally selected strain derived from DSM 17938). Results showed that DSM 17938 and BG-R46 produced adenosine while "exhausting" AMP, whereas DSM 17938∆5NT did not generate adenosine in culture. Plasma 5'NT activity was increased by DSM 17938 or BG-R46, but not by DSM 17938Δ5NT in SF mice. BG-R46 increased both adenosine and inosine levels in the cecum of SF mice. DSM 17938 increased adenosine levels, whereas BG-R46 increased inosine levels in the liver. DSM 17938Δ5NT did not significantly change the levels of adenosine or inosine in the GI tract or the liver of SF mice. Although regulatory CD73 + CD8 + T cells were decreased in spleen and blood of SF mice, these regulatory T cells could be increased by orally feeding DSM 17938 or BG-R46, but not DSM 17938Δ5NT. In conclusion, probiotic-5'NT may be a central mediator of DSM 17938 protection against autoimmunity. Optimal 5'NT activity from various probiotic strains could be beneficial in treating Treg-associated immune disorders in humans.

4.
Benef Microbes ; 14(1): 73-84, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36815493

RESUMO

When new-born mice are subjected to acute maternal separation stress, cow-milk based formula feeding, and brief recurrent hypoxia with cold stress, they develop gut inflammation similar to the phenotype of neonatal necrotizing enterocolitis, characterised by an increase in gut mucosal effector T (Teffs) and reduced Foxp3+ regulatory T (Tregs) cells. The imbalance can be prevented by probiotic Limosilactobacillus reuteri DSM 17938 (LR 17938). We hypothesised that LR 17938 could potentiate a tolerogenic function of Tregs. To analyse whether LR 17938 can educate Tregs to improve their tolerogenic potency during neonatal stress, we isolated T cells (Tregs and Teffs) from 'donor' mice fed with either LR 17938 (107 cfu) or control media. The cells were adoptively transferred (AT) by intraperitoneal injection (5 × 105 cells/mouse) to new-born (d5) recipient mice. Mice were then separated from their dams, fed formula by gavage, and exposed to hypoxia and cold stress (NeoStress) for 4 days. We analysed the percentage of Tregs in CD4+T helper cells in the intestine (INT) and mesenteric lymph nodes (MLN) of recipient mice. We found that: (1) the percentage of Tregs in the INT and MLN following NeoStress were significantly reduced compared to dam-fed unstressed mice; (2) AT of either naïve Tregs or LR-educated Tregs to mice with Neostress increased the percentage of Tregs in the INT and MLN compared to the percentage in NeoStress mice without Treg treatment; however, LR-educated Tregs increased the Tregs significantly more than naïve Tregs; and (3) AT of LR-educated Tregs reduced pro-inflammatory CD44+Foxp3-NonTregs and inflammatory CX3CR1+ dendritic cells in the intestinal mucosa of NeoStress mice. In conclusion, adoptive transfer of Tregs promotes the generation of and/or migration of endogenous Tregs in the intestinal mucosa of recipient mice. Importantly, probiotic-educated Tregs are more potent than naïve Tregs to enhance immune tolerance following neonatal stress.


Assuntos
Probióticos , Linfócitos T Reguladores , Feminino , Bovinos , Camundongos , Animais , Privação Materna , Mucosa Intestinal , Tolerância Imunológica , Fatores de Transcrição Forkhead
5.
Am J Case Rep ; 23: e937255, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36225096

RESUMO

BACKGROUND Columnar metaplasia of the lower esophagus includes both gastric and intestinal metaplasia. Children with severe neurologic impairment and congenital esophageal atresia often have gastroesophageal reflux disease, which can lead to Barrett's esophagus, a form of lower esophageal columnar metaplasia and precursor to esophageal adenocarcinoma, with some, but not all, guidelines specifically requiring the presence of intestinal metaplasia for diagnosis. This case series illustrates how iron deficiency anemia may be the primary symptom of esophageal columnar metaplasia in such children and how upper endoscopy is essential in their initial and ongoing evaluation. CASE REPORT We review 5 cases of columnar metaplasia of the lower esophagus in children, 3 with severe neurologic impairment and 2 with esophageal atresia. Each child presented with marked iron deficiency anemia and minimal-to-no gastrointestinal symptoms. CONCLUSIONS We conclude that columnar metaplasia of the esophagus may present with iron deficiency anemia in children with neurologic impairment or congenital esophageal atresia, even if without overt gastrointestinal symptoms. Accordingly, we propose that early endoscopic evaluation should be considered in this specific patient population. Based on our literature review, we also emphasize the need for guidelines on the endoscopic surveillance of such children with any type of columnar metaplasia of the lower esophagus, given the associated risk of malignant transformation.


Assuntos
Anemia , Esôfago de Barrett , Atresia Esofágica , Neoplasias Esofágicas , Deficiências de Ferro , Doenças do Sistema Nervoso , Esôfago de Barrett/diagnóstico , Esôfago de Barrett/epidemiologia , Esôfago de Barrett/patologia , Criança , Atresia Esofágica/complicações , Atresia Esofágica/diagnóstico , Neoplasias Esofágicas/complicações , Neoplasias Esofágicas/diagnóstico , Humanos , Metaplasia/complicações , Doenças do Sistema Nervoso/complicações
6.
Amino Acids ; 54(10): 1383-1401, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35536363

RESUMO

We studied the effect of feeding a single probiotic Limosilactobacillus reuteri DSM 17938 (LR 17938) on the luminal and plasma levels of amino acids and their derivatives in the suckling newborn mouse, using gas chromatography and high-performance liquid chromatography. We found that LR 17938 increased the relative abundance of many amino acids and their derivatives in stool, while it simultaneously significantly reduced the plasma levels of three amino acids (serine, citrulline, and taurine). Many peptides and dipeptides were increased in stool and plasma, notably gamma-glutamyl derivatives of amino acids, following ingestion of the LR 17938. Gamma-glutamyl transformation of amino acids facilitates their absorption. LR 17938 significantly upregulated N-acetylated amino acids, the levels of which could be useful biomarkers in plasma and warrant further investigation. Specific fecal microbiota were associated with higher levels of fecal amino acids and their derivatives. Changes in luminal and circulating levels of amino acid derivatives, polyamines, and tryptophan metabolites may be mechanistically related to probiotic efficacy.


Assuntos
Limosilactobacillus reuteri , Probióticos , Camundongos , Animais , Limosilactobacillus reuteri/metabolismo , Animais Recém-Nascidos , Fezes , Aminoácidos/metabolismo
7.
J Pediatr Gastroenterol Nutr ; 74(3): 377-382, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724444

RESUMO

ABSTRACT: Gastrointestinal (GI) symptoms often affect children with autism spectrum disorders (ASD) and GI symptoms have been associated with an abnormal fecal microbiome. There is limited evidence of Candida species being more prevalent in children with ASD. We enrolled 20 children with ASD and GI symptoms (ASD + GI), 10 children with ASD but no GI symptoms (ASD - GI), and 20 from typically developing (TD) children in this pilot study. Fecal mycobiome taxa were analyzed by Internal Transcribed Spacer sequencing. GI symptoms (GI Severity Index [GSI]), behavioral symptoms (Social Responsiveness Scale -2 [SRS-2]), inflammation and fungal immunity (fecal calprotectin and serum dectin-1 [ELISA]) were evaluated. We observed no changes in the abundance of total fungal species (alpha diversity) between groups. Samples with identifiable Candida spp. were present in 4 of 19 (21%) ASD + GI, in 5 of 9 (56%) ASD - GI, and in 4 of 16 (25%) TD children (overall P = 0.18). The presence of Candida spp. did not correlate with behavioral or GI symptoms (P = 0.38, P = 0.5, respectively). Fecal calprotectin was normal in all but one child. Finally, there was no significance in serum dectin-1 levels, suggesting no increased fungal immunity in children with ASD. Our data suggest that fungi are present at normal levels in the stool of children with ASD and are not associated with gut inflammation.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Gastroenteropatias , Microbioma Gastrointestinal , Micobioma , Transtorno do Espectro Autista/complicações , Transtorno Autístico/complicações , Criança , Fungos , Gastroenteropatias/complicações , Humanos , Inflamação/complicações , Complexo Antígeno L1 Leucocitário , Projetos Piloto
8.
Adv Exp Med Biol ; 1332: 167-187, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34251644

RESUMO

As a functional amino acid (AA), L-arginine (Arg) serves not only as a building block of protein but also as an essential substrate for the synthesis of nitric oxide (NO), creatine, polyamines, homoarginine, and agmatine in mammals (including humans). NO (a major vasodilator) increases blood flow to tissues. Arg and its metabolites play important roles in metabolism and physiology. Arg is required to maintain the urea cycle in the active state to detoxify ammonia. This AA also activates cellular mechanistic target of rapamycin (MTOR) and focal adhesion kinase cell signaling pathways in mammals, thereby stimulating protein synthesis, inhibiting autophagy and proteolysis, enhancing cell migration and wound healing, promoting spermatogenesis and sperm quality, improving conceptus survival and growth, and augmenting the production of milk proteins. Although Arg is formed de novo from glutamine/glutamate and proline in humans, these synthetic pathways do not provide sufficient Arg in infants or adults. Thus, humans and other animals do have dietary needs of Arg for optimal growth, development, lactation, and fertility. Much evidence shows that oral administration of Arg within the physiological range can confer health benefits to both men and women by increasing NO synthesis and thus blood flow in tissues (e.g., skeletal muscle and the corpora cavernosa of the penis). NO is a vasodilator, a neurotransmitter, a regulator of nutrient metabolism, and a killer of bacteria, fungi, parasites, and viruses [including coronaviruses, such as SARS-CoV and SARS-CoV-2 (the virus causing COVID-19). Thus, Arg supplementation can enhance immunity, anti-infectious, and anti-oxidative responses, fertility, wound healing, ammonia detoxification, nutrient digestion and absorption, lean tissue mass, and brown adipose tissue development; ameliorate metabolic syndromes (including dyslipidemia, obesity, diabetes, and hypertension); and treat individuals with erectile dysfunction, sickle cell disease, muscular dystrophy, and pre-eclampsia.


Assuntos
COVID-19 , Óxido Nítrico , Animais , Arginina/metabolismo , Feminino , Humanos , Masculino , Gravidez , Biossíntese de Proteínas , SARS-CoV-2
9.
Am J Physiol Gastrointest Liver Physiol ; 320(6): G969-G981, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33787352

RESUMO

Treg deficiency causes a lethal, CD4+ T cell-driven autoimmune disease called IPEX syndrome (immunodysregulation, polyendocrinopathy, and enteropathy, with X-linked inheritance) in humans and in the scurfy (SF) mouse, a mouse model of the disease. Feeding Limosilactobacillus reuteri DSM 17938 (LR 17938, LR) to SF mice reprograms the gut microbiota, reduces disease progression, and prolongs lifespan. However, the efficacy and mechanism of LR, compared with other probiotics, in producing these effects is unknown. We compared LR with Lacticaseibacillus rhamnosus GG (LGG), an extensively investigated probiotic. LR was more effective than LGG in prolonging survival. Both probiotics restored the fecal microbial alpha diversity, but they produced distinct fecal bacterial clusters and differentially modulated microbial relative abundance (RA). LR increased the RA of phylum_Firmicutes, genus_Oscillospira whereas LR reduced phylum_Bacteroidetes, genus_Bacteroides and genus_Parabacteroides, reversing changes attributed to the SF phenotype. LGG primarily reduced the RA of genus_Bacteroides. Both LR and LGG reduced the potentially pathogenic taxon class_γ-proteobacteria. Plasma metabolomics revealed substantial differences among 696 metabolites. We observed similar changes of many clusters of metabolites in SF mice associated with treatment with either LR or LGG. However, a unique effect of LR was to increase the abundance of plasma adenosine metabolites such as inosine, which we previously showed had immune modulatory effects. In conclusion: 1) different probiotics produce distinct signatures in the fecal microbial community in mice with Treg deficiency; and 2) when comparing different probiotics, there are strain-specific microbial products with different anti-inflammatory properties, reinforcing the concept that "one size does not fit all" in the treatment of autoimmune disease.NEW & NOTEWORTHY In the treatment of Treg-deficiency-induced autoimmunity, Limosilactobacillus reuteri DSM 17938 (LR) showed greater efficacy than Lacticaseibacillus rhamnosus GG (LGG). The study demonstrated that two different probiotics produce distinct signatures in the fecal microbial community in mice with Treg deficiency, but with many similarities in global plasma metabolites in general. However, there are strain-specific microbial products with different anti-inflammatory properties, reinforcing the concept that "one size does not fit all" in the treatment of autoimmune disease.


Assuntos
Diabetes Mellitus Tipo 1/congênito , Diarreia/microbiologia , Microbioma Gastrointestinal/imunologia , Doenças Genéticas Ligadas ao Cromossomo X/microbiologia , Doenças do Sistema Imunitário/congênito , Lacticaseibacillus rhamnosus , Limosilactobacillus reuteri , Linfócitos T Reguladores/imunologia , Animais , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/microbiologia , Diarreia/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Doenças do Sistema Imunitário/metabolismo , Doenças do Sistema Imunitário/microbiologia , Camundongos , Camundongos Transgênicos , Probióticos , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/microbiologia
10.
Pediatr Res ; 90(5): 980-988, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33531679

RESUMO

BACKGROUND: Probiotic Lactobacillus reuteri DSM 17938 (LR 17938) is beneficial to infants with colic. To understand its mechanism of action, we assessed ultrasonic vocalizations (USV) and brain pain/stress genes in newborn mice exposed to maternal separation stress. METHODS: Pups were exposed to unpredictable maternal separation (MSU or SEP) or MSU combined with unpredictable maternal stress (MSU + MSUS or S + S), from postnatal days 5 to 14. USV calls and pain/stress/neuroinflammation-related genes in the brain were analyzed. RESULTS: We defined 10 different neonatal call patterns, none of which increased after MSU. Stress reduced overall USV calls. Orally feeding LR 17938 also did not change USV calls after MSU. However, LR 17938 markedly increased vocalizations in mice allowed to stay with their dams. Even though LR 17938 did not change MSU-related calls, LR 17938 modulated brain genes related to stress and pain. Up-regulated genes following LR 17938 treatment were opioid peptides, kappa-opioid receptor 1 genes, and CD200, important in anti-inflammatory signaling. LR 17938 down-regulated CCR2 transcripts, a chemokine receptor, in the stressed neonatal brain. CONCLUSIONS: USV calls in newborn mice are interpreted as "physiological calls" instead of "cries." Feeding LR 17938 after MSU did not change USV calls but modulated cerebral genes favoring pain and stress reduction and anti-inflammatory signaling. IMPACT: We defined mouse ultrasonic vocalization (USV) call patterns in this study, which will be important in guiding future studies in other mouse strains. Newborn mice with maternal separation stress have reduced USVs, compared to newborn mice without stress, indicating USV calls may represent "physiological calling" instead of "crying." Oral feeding of probiotic Lactobacillus reuteri DSM 17938 raised the number of calls when newborn mice continued to suckle on their dams, but not when mice were under stress. The probiotic bacteria had a dampening effect on monocyte activation and on epinephrine and glutamate-related stress gene expression in the mouse brain.


Assuntos
Animais Recém-Nascidos , Limosilactobacillus reuteri , Privação Materna , Probióticos , Comunicação Animal , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
Sci Rep ; 11(1): 2593, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510368

RESUMO

Levels of intestinal toll-like receptor 4 (TLR4) impact inflammation in the neonatal gastrointestinal tract. While surfactant protein A (SP-A) is known to regulate TLR4 in the lung, it also reduces intestinal damage, TLR4 and inflammation in an experimental model of necrotizing enterocolitis (NEC) in neonatal rats. We hypothesized that SP-A-deficient (SP-A-/-) mice have increased ileal TLR4 and inflammatory cytokine levels compared to wild type mice, impacting intestinal physiology. We found that ileal TLR4 and proinflammatory cytokine levels were significantly higher in infant SP-A-/- mice compared to wild type mice. Gavage of neonatal SP-A-/- mice with purified SP-A reduced ileal TLR4 protein levels. SP-A reduced expression of TLR4 and proinflammatory cytokines in normal human intestinal epithelial cells (FHs74int), suggesting a direct effect. However, incubation of gastrointestinal cell lines with proteasome inhibitors did not abrogate the effect of SP-A on TLR4 protein levels, suggesting that proteasomal degradation is not involved. In a mouse model of experimental NEC, SP-A-/- mice were more susceptible to intestinal stress resembling NEC, while gavage with SP-A significantly decreased ileal damage, TLR4 and proinflammatory cytokine mRNA levels. Our data suggests that SP-A has an extrapulmonary role in the intestinal health of neonatal mice by modulating TLR4 and proinflammatory cytokines mRNA expression in intestinal epithelium.


Assuntos
Proteína A Associada a Surfactante Pulmonar/uso terapêutico , Receptor 4 Toll-Like/metabolismo , Animais , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Íleo/efeitos dos fármacos , Íleo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo
13.
Microbiome ; 7(1): 145, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31699146

RESUMO

BACKGROUND: Regulatory T cell (Treg) deficiency leads to IPEX syndrome, a lethal autoimmune disease, in Human and mice. Dysbiosis of the gut microbiota in Treg-deficient scurfy (SF) mice has been described, but to date, the role of the gut microbiota remains to be determined. RESULTS: To examine how antibiotic-modified microbiota can inhibit Treg deficiency-induced lethal inflammation in SF mice, Treg-deficient SF mice were treated with three different antibiotics. Different antibiotics resulted in distinct microbiota and metabolome changes and led to varied efficacy in prolonging lifespan and reducing inflammation in the liver and lung. Moreover, antibiotics altered plasma levels of several cytokines, especially IL-6. By analyzing gut microbiota and metabolome, we determined the microbial and metabolomic signatures which were associated with the antibiotics. Remarkably, antibiotic treatments restored the levels of several primary and secondary bile acids, which significantly reduced IL-6 expression in RAW macrophages in vitro. IL-6 blockade prolonged lifespan and inhibited inflammation in the liver and lung. By using IL-6 knockout mice, we further identified that IL-6 deletion provided a significant portion of the protection against inflammation induced by Treg dysfunction. CONCLUSION: Our results show that three antibiotics differentially prolong survival and inhibit lethal inflammation in association with a microbiota-IL-6 axis. This pathway presents a potential avenue for treating Treg deficiency-mediated autoimmune disorders.


Assuntos
Doenças Autoimunes , Diabetes Mellitus Tipo 1/congênito , Diarreia , Disbiose/microbiologia , Microbioma Gastrointestinal , Doenças Genéticas Ligadas ao Cromossomo X , Doenças do Sistema Imunitário/congênito , Inflamação , Animais , Antibacterianos/farmacologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/microbiologia , Doença Crônica , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/microbiologia , Diarreia/imunologia , Diarreia/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Doenças Genéticas Ligadas ao Cromossomo X/imunologia , Doenças Genéticas Ligadas ao Cromossomo X/microbiologia , Doenças do Sistema Imunitário/imunologia , Doenças do Sistema Imunitário/microbiologia , Inflamação/imunologia , Inflamação/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/citologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-31565666

RESUMO

BACKGROUND AND OBJECTIVE: Breast milk has many growth-promoting and immune-active components, including transforming growth factor-ß, lactoferrin, lysozyme, immunoglobulin A, and prebiotics such as the human milk oligosaccharides. Treatment with Lactobacillus reuteri DSM 17938 (LR), a probiotic with immunomodulatory functions, significantly increases regulatory T cells (Tregs) in the intestinal mucosa of newborn suckling rats. In humans, treatment with LR of infants with colic reduces crying optimally if the infants are breast-fed. Therefore, we examined the effects of human breast milk (HBM) on LR-associated immune modulation. METHODS: Newborn rats were divided into 8 feeding groups, including dam-fed ± LR (106 CFU/kg bw/day, daily), formula-fed ± LR, formula with 20% (v/v) HBM-fed ± LR, and HBM-fed ± LR. Pups were fed by gavage from d1 to d3 of age. Subsequently, we measured intestinal immune cell profiles, including Tregs and tolerogenic dendritic cells (tDCs) by flow cytometry. We also measured inflammatory cytokine and chemokine levels of interleukin (IL)-1ß and cytokine-induced neutrophil chemoattratant (CINC)-1 in intestinal tissue lysates by ELISA. RESULTS AND CONCLUSION: (1) Formula feeding increased intestinal CD3+ T cells, CD4+ helper T (TH) cells and CD11c+ DCs, pro-inflammatory effects which were reversed by HBM. (2) When comparing HBM-fed with formula-fed newborns, HBM supplementation produced a lower percentage of CD4+ TH cells and a higher percentage of CD8+ (cytotoxic) T cells, while reducing protein levels of IL-1ß and CINC-1 in the intestine. (3) Probiotic LR feeding maximally stimulated the percentage of intestinal Tregs and tDCs when the pups were fed HBM. In conclusion, HBM reduced formula-induced intestinal gut immune activation, and the addition of LR further promoted immune tolerance.

15.
Am J Physiol Gastrointest Liver Physiol ; 317(6): G824-G838, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31482733

RESUMO

Early administration of Lactobacillus reuteri DSM 17938 (LR) prevents necrotizing enterocolitis and inhibits regulatory T-cell (Treg)-deficiency-associated autoimmunity in mice. In humans, LR reduces crying time in breastfed infants with colic, modifies severity in infants with acute diarrheal illnesses, and improves pain in children with functional bowel disorders. In healthy breastfed newborns with evolving microbial colonization, it is unclear if early administration of LR can modulate gut microbiota and their metabolites in such a way as to promote homeostasis. We gavaged LR (107 colony-forming units/day, daily) to C57BL/6J mice at age of day 8 for 2 wk. Both male and female mice were investigated in these experiments. We found that feeding LR did not affect clinical phenotype or inflammatory biomarkers in plasma and stool, but LR increased the proportion of Foxp3+ regulatory T cells (Tregs) in the intestine. LR also increased bacterial diversity and the relative abundance of p_Firmicutes, f_Lachnospiraceae, f_Ruminococcaceae, and genera Clostridium and Candidatus arthromitus, while decreasing the relative abundance of p_Bacteriodetes, f_Bacteroidaceae, f_Verrucomicrobiaceae, and genera Bacteroides, Ruminococcus, Akkermansia, and Sutterella. Finally, LR exerted a major impact on the plasma metabolome, upregulating amino acid metabolites formed via the urea, tricarboxylic acid, and methionine cycles and increasing tryptophan metabolism. In conclusion, early oral administration of LR to healthy breastfed mice led to microbial and metabolic changes which could be beneficial to general health.NEW & NOTEWORTHY Oral administration of Lactobacillus reuteri DSM 17938 (LR) to healthy breastfed mice promotes intestinal immune tolerance and is linked to proliferation of beneficial gut microbiota. LR upregulates plasma metabolites that are involved in the urea cycle, the TCA cycle, methionine methylation, and the polyamine pathway. Herein, we show that LR given to newborn mice specifically increases levels of tryptophan metabolites and the purine nucleoside adenosine that are known to enhance tolerance to inflammatory stimuli.


Assuntos
Microbioma Gastrointestinal , Intestinos , Limosilactobacillus reuteri , Probióticos/administração & dosagem , Linfócitos T Reguladores , Triptofano/metabolismo , Adenosina/metabolismo , Administração Oral , Animais , Animais Recém-Nascidos , Intervenção Médica Precoce/métodos , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Intestinos/microbiologia , Intestinos/fisiologia , Limosilactobacillus reuteri/imunologia , Limosilactobacillus reuteri/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Interações Microbianas/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia
16.
Nutrients ; 11(7)2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31323989

RESUMO

Human breast milk (HBM) may have beneficial effects on Lactobacillus reuteri DSM 17938 (LR 17938) -mediated immunomodulation. We aimed to determine the effects of HBM on proliferation of LR 17938 in vitro and its associated proteins and metabolites in culture, in order to provide mechanistic insights into the health benefits of LR 17938. LR 17938 was cultured anaerobically in MRS bacterial culture media, HBM (from 6 mothers), and 2 types of cow-milk formula. The colony-forming unit (CFU) was calculated to evaluate LR 17938 growth. Sixteen-hour-fermented supernatants were used for metabolomics, and bacterial lysates were used for proteomics analysis. We found that growth of LR 17938 was 10 times better in HBM than in formula. We detected 261/452 metabolites upregulated when LR 17938 cultured in HBM compared to in formula, mainly participating in the glyoxylate cycle (succinate), urea cycle (citrulline), methionine methylation (N-acetylcysteine), and polyamine synthesis (spermidine). The significantly up-regulated enzymes were also involved in the formation of acetyl-CoA in the glyoxylate cycle and the antioxidant N-acetylcysteine. In conclusion, HBM enhances the growth of LR 17938 compared to formula and promotes LR 17938-associated metabolites that relate to energy and antioxidant status, which may be linked to the physiological effects of L. reuteri.


Assuntos
Limosilactobacillus reuteri/metabolismo , Leite Humano/química , Probióticos , Proliferação de Células , Meios de Cultura , Humanos , Lactente , Fórmulas Infantis , Limosilactobacillus reuteri/classificação , Limosilactobacillus reuteri/efeitos dos fármacos , Lipídeos/farmacologia
17.
Nutrients ; 10(10)2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30340338

RESUMO

Probiotics have been used to ameliorate gastrointestinal symptoms since ancient times. Over the past 40 years, probiotics have been shown to impact the immune system, both in vivo and in vitro. This interaction is linked to gut microbes, their polysaccharide antigens, and key metabolites produced by these bacteria. At least four metabolic pathways have been implicated in mechanistic studies of probiotics, based on mechanistic studies in animal models. Microbial⁻immune system crosstalk has been linked to: short-chain fatty acid production and signaling, tryptophan metabolism and the activation of aryl hydrocarbon receptors, nucleoside signaling in the gut, and activation of the intestinal histamine-2 receptor. Several randomized controlled trials have now shown that microbial modification by probiotics may improve gastrointestinal symptoms and multiorgan inflammation in rheumatoid arthritis, ulcerative colitis, and multiple sclerosis. Future work will need to carefully assess safety issues, selection of optimal strains and combinations, and attempts to prolong the duration of colonization of beneficial microbes.


Assuntos
Doenças Autoimunes/microbiologia , Doenças Inflamatórias Intestinais/microbiologia , Probióticos/farmacologia , Doenças Reumáticas/microbiologia , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal/imunologia , Humanos , Inflamação/microbiologia , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/terapia , Intestinos/imunologia , Intestinos/microbiologia , Nucleosídeos/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores Histamínicos H2/metabolismo , Doenças Reumáticas/imunologia , Doenças Reumáticas/terapia , Triptofano/metabolismo
18.
J Clin Pharmacol ; 58 Suppl 10: S164-S179, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30248200

RESUMO

Few treatments for human diseases have received as much investigation in the past 20 years as probiotics. In 2017, English-language meta-analyses totaling 52 studies determined the effect of probiotics on conditions ranging from necrotizing enterocolitis and colic in infants to constipation, irritable bowel syndrome, and hepatic encephalopathy in adults. The strongest evidence in favor of probiotics lies in the prevention or treatment of 5 disorders: necrotizing enterocolitis, acute infectious diarrhea, acute respiratory tract infections, antibiotic-associated diarrhea, and infant colic. Probiotic mechanisms of action include the inhibition of bacterial adhesion; enhanced mucosal barrier function; modulation of the innate and adaptive immune systems (including induction of tolerogenic dendritic cells and regulatory T cells); secretion of bioactive metabolites; and regulation of the enteric and central nervous systems. Future research is needed to identify the optimal probiotic and dose for specific diseases, to address whether the addition of prebiotics (to form synbiotics) would enhance activity, and to determine if defined microbial communities would provide benefit exceeding that of single-species probiotics.


Assuntos
Cólica/terapia , Diarreia/terapia , Enterocolite Necrosante/terapia , Hipersensibilidade/terapia , Síndrome do Intestino Irritável/terapia , Probióticos/uso terapêutico , Infecções Respiratórias/terapia , Animais , Humanos , Prevenção Primária
19.
J Pediatr ; 203: 55-61.e3, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30177353

RESUMO

OBJECTIVE: To dissect potential confounding effects of breast milk and formula feeding on crying + fussing, fecal calprotectin, and gut microbiota in babies with colic. We hypothesized that infant colic is associated with gut inflammation linked to intestinal dysbiosis. STUDY DESIGN: A nested case-control design of 3 of our studies was used to analyze clinical and laboratory data at presentation, comparing babies with colic with controls. All investigators other than the biostatistician were blinded during data analysis. Subjects were recruited based on their age and crying + fussy time. We screened 65 infants, 37 with colic, as defined by Barr diary (crying + fussing time >3 hours daily), who were compared with 28 noncolicky infants. RESULTS: Fecal calprotectin was elevated in babies with colic. For each mode of infant feeding (breast milk, formula, or breast + formula), infants' fecal calprotectin was higher in babies with colic. Infants with colic had similar levels of fecal alpha diversity (richness) when compared with controls, and alpha diversity was lower in breast-fed babies. Beta diversity at the phylum level revealed significant differences in microbial population. A phylum difference resulted from reduced Actinobacteria (95% of which are Bifidobacilli) in babies with colic. Species significantly associated with colic were Acinetobacter and Lactobacillus iners. CONCLUSIONS: Colic is linked with gut inflammation (as determined by fecal calprotectin) and dysbiosis, independent of mode of feeding, with fewer Bifidobacilli. TRIAL REGISTRATION: Clinicaltrials.gov: NCT01279265 and NCT01849991.


Assuntos
Cólica/complicações , Disbiose/diagnóstico , Fezes/química , Inflamação/diagnóstico , Complexo Antígeno L1 Leucocitário/análise , Acinetobacter/isolamento & purificação , Aleitamento Materno , Estudos de Casos e Controles , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal , Humanos , Lactente , Fórmulas Infantis , Recém-Nascido , Lactobacillus/isolamento & purificação , Masculino
20.
Am J Physiol Gastrointest Liver Physiol ; 315(2): G231-G240, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29648878

RESUMO

Lactobacillus reuteri DSM 17938 (LR 17938) has been shown to reduce the incidence and severity of necrotizing enterocolitis (NEC). It is unclear if preventing NEC by LR 17938 is mediated by Toll-like receptor 2 (TLR2), which is known to mediate proinflammatory responses to bacterial cell wall components. NEC was induced in newborn TLR2-/- or wild-type (WT) mice by the combination of gavage-feeding cow milk-based formula and exposure to hypoxia and cold stress. Treatment groups were administered formula supplemented with LR 17938 or placebo (deMan-Rogosa-Sharpe media). We observed that LR 17938 significantly reduced the incidence of NEC and reduced the percentage of activated effector CD4+T cells, while increasing Foxp3+ regulatory T cells in the intestinal mucosa of WT mice with NEC, but not in TLR2-/- mice. Dendritic cell (DC) activation by LR 17938 was mediated by TLR2. The percentage of tolerogenic DC in the intestine of WT mice was increased by LR 17938 treatment during NEC, a finding not observed in TLR2-/- mice. Furthermore, gut levels of proinflammatory cytokines IL-1ß and IFN-γ were decreased after treatment with LR 17938 in WT mice but not in TLR2-/- mice. In conclusion, the combined in vivo and in vitro findings suggest that TLR2 receptors are involved in DC recognition and DC-priming of T cells to protect against NEC after oral administration of LR 17938. Our studies further clarify a major mechanism of probiotic LR 17938 action in preventing NEC by showing that neonatal immune modulation of LR 17938 is mediated by a mechanism requiring TLR2. NEW & NOTEWORTHY Lactobacillus reuteri DSM 17938 (LR 17938) has been shown to protect against necrotizing enterocolitis (NEC) in neonates and in neonatal animal models. The role of Toll-like receptor 2 (TLR2) as a sensor for gram-positive probiotics, activating downstream anti-inflammatory responses is unclear. Our current studies examined TLR2 -/- mice subjected to experimental NEC and demonstrated that the anti-inflammatory effects of LR 17938 are mediated via a mechanism requiring TLR2.


Assuntos
Enterocolite Necrosante , Mucosa Intestinal/imunologia , Intestinos/patologia , Limosilactobacillus reuteri , Receptor 2 Toll-Like/imunologia , Animais , Animais Recém-Nascidos , Anti-Inflamatórios/imunologia , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Enterocolite Necrosante/imunologia , Enterocolite Necrosante/prevenção & controle , Interleucina-1beta/imunologia , Limosilactobacillus reuteri/imunologia , Limosilactobacillus reuteri/fisiologia , Camundongos , Probióticos/farmacologia , Linfócitos T Reguladores/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...