Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(7)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37493501

RESUMO

A novel quadrature Doppler Backscattering (DBS) system has been developed and optimized for the E-band (60-90 GHz) frequency range using either O-mode or X-mode polarization in DIII-D plasmas. In general, DBS measures the amplitude of density fluctuations and their velocity in the lab frame. The system can simultaneously monitor both low-frequency turbulence (f < 10 MHz) and radiofrequency plasma density fluctuations over a selectable frequency range (20-500 MHz). Detection of high-frequency fluctuations has been demonstrated for low harmonics of the ion cyclotron frequency (e.g., 2fci ∼ 23 MHz) and externally driven high-frequency helicon waves (f = 476 MHz) using an adjustable frequency down conversion system. Importantly, this extends the application of DBS to a high-frequency spectral domain while maintaining important turbulence and flow measurement capabilities. This unique system has low phase noise, good temporal resolution (sub-millisecond), and excellent wavenumber coverage (kθ ∼ 1-20 cm-1 and kr ≲ 30 cm-1). As a demonstration, localized internal DIII-D plasma measurements are presented from turbulence (f ≤ 5 MHz), Alfvenic waves (f ∼ 6.5 MHz), ion cyclotron waves (f ≥ 20 MHz), as well as fluctuations around 476 MHz driven by an external high-power 476 MHz helicon wave antenna. In the future, helicon measurements will be used to validate GENRAY and AORSA modeling tools for prediction of helicon wave propagation, absorption, and current drive location for the newly installed helicon current drive system on DIII-D.

2.
Rev Sci Instrum ; 93(11): 113549, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461471

RESUMO

A new Doppler backscattering (DBS) system has been installed and tested on the MAST-U spherical tokamak. It utilizes eight simultaneous fixed frequency probe beams (32.5, 35, 37.5, 40, 42.5, 45, 47.5, and 50 GHz). These frequencies provide a range of radial positions from the edge plasma to the core depending on plasma conditions. The system utilizes a combination of novel features to provide remote control of the probed density wavenumber, the launched polarization (X vs O-mode), and the angle of the launched DBS to match the magnetic field pitch angle. The range of accessible density turbulence wavenumbers (kθ) is reasonably large with normalized wavenumbers kθρs ranging from ≤0.5 to 9 (ion sound gyroradius ρs = 1 cm). This wavenumber range is relevant to a variety of instabilities believed to be important in establishing plasma transport (e.g., ion temperature gradient, trapped electron, electron temperature gradient, micro-tearing, kinetic ballooning modes). The system is specifically designed to address the requirement of density fluctuation wavevector alignment which can significantly reduce the SNR if not accounted for.

3.
Rev Sci Instrum ; 93(11): 113511, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461495

RESUMO

The radial correlation length (Lr) is one of the essential quantities to measure in order to more fully characterize and understand turbulence and anomalous transport in magnetic fusion plasmas. The analysis method for calculating Lr of electron temperature (Te) turbulence from correlation electron cyclotron emission (correlation ECE or CECE) radiometer measurements has not been fully developed partly due to the fact that the turbulent electron temperature fluctuations are generally imbedded in much larger amplitude thermal noise, which leads to a greatly reduced cross correlation coefficient (ϱ) between two spatially separated ECE signals. This work finds that this ϱ reduction factor due to thermal noise is a function of the local relative temperature fluctuation power and CECE system bandwidths of intermediate and video frequencies, independent of radial separations. This indicates that under the approximation of constant relative temperature fluctuation power for a small radial range of local CECE measurements, the original shape of ϱ as a function of radial separation without thermal noise is preserved in the CECE data with thermal noise present. For Te turbulence with a Gaussian radial wavenumber spectrum, a fit function using the product of Gaussian and sinusoidal functions is derived for calculating Lr. This analysis method has been numerically tested using simulated ECE radiometer data over a range of parameters. Using this method, the experimental temperature turbulence correlation length Lr in a DIII-D L-mode plasma is found to be ∼10 times the local ion gyroradius.

4.
Rev Sci Instrum ; 93(10): 103549, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319338

RESUMO

The high density fluctuation poloidal wavenumber, kθ (kθ > 8 cm-1, kθρs > 5, ρs is the ion gyro radius using the ion sound velocity), measurement capability of a new Doppler backscattering (DBS) system at the DIII-D tokamak has been experimentally evaluated. In DBS, wavenumber (k) matching becomes more important at higher wavenumbers, owing to the exponential dependence of the measured signal loss factor on wave vector mismatch. Wave vector matching allows for the Bragg scattering condition to be satisfied, which minimizes the signal loss at higher k's. In the previous DBS system, without toroidal wave vector matching, the measured DBS signal-to-noise ratio at higher kθ (>8 cm-1) is substantially reduced, making it difficult to measure higher kθ turbulence. The new DBS system has been optimized to access higher wavenumber, kθ ≤ 20 cm-1, density turbulence measurement. The optimization hardware addresses fluctuation wave vector matching using toroidal steering of the launch mirror to produce a backscattered signal with improved intensity. The probe's sensitivity to high-k density fluctuations has been increased by approximately an order of magnitude compared to the old system that has been in use at DIII-D. Note that typical measurement locations are above or below the tokamak midplane on the low field side with normalized radial ranges of 0.5-1.0. The new DBS probe system with the toroidal matching of fluctuation wave vectors is thought to be critical to understanding high-k turbulent transport in fusion-relevant research at DIII-D.

5.
Rev Sci Instrum ; 93(10): 103536, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319398

RESUMO

We use the beam model of Doppler backscattering (DBS), which was previously derived from beam tracing and the reciprocity theorem, to shed light on mismatch attenuation. This attenuation of the backscattered signal occurs when the wavevector of the probe beam's electric field is not in the plane perpendicular to the magnetic field. Correcting for this effect is important for determining the amplitude of the actual density fluctuations. Previous preliminary comparisons between the model and Mega-Ampere Spherical Tokamak (MAST) plasmas were promising. In this work, we quantitatively account for this effect on DIII-D, a conventional tokamak. We compare the predicted and measured mismatch attenuation in various DIII-D, MAST, and MAST-U plasmas, showing that the beam model is applicable in a wide variety of situations. Finally, we performed a preliminary parameter sweep and found that the mismatch tolerance can be improved by optimizing the probe beam's width and curvature at launch. This is potentially a design consideration for new DBS systems.

6.
Rev Sci Instrum ; 92(4): 043550, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243375

RESUMO

New capabilities of fast-sweep frequency-modulated profile reflectometry are explored to measure electron density ne perturbation magnitudes and radial profiles due to plasma coherent modes in DIII-D. The first approach is based on the frequency analysis of phase perturbations associated with high frequency (∼MHz) Alfvén eigenmodes (AEs). The measurement of ∼5.5 MHz fast-ion-driven global Alfvén eigenmodes (GAEs) is demonstrated in a neutral beam-heated DIII-D plasma. The GAE induced a broad radial distribution of phase perturbations in the profile reflectometer data. Analysis of these data determined the effective cutoff location displacement and the estimated ne fluctuation profile. In the second approach, high resolution ne profiles are used directly to determine the radial structure of ne perturbations due to a neo-classical tearing mode. These new measurements broaden the application of profile reflectometry and advance the development of AE spectroscopy as a tool for non-invasive diagnosis of fast-ion-driven modes in DIII-D and burning plasmas such as ITER.

7.
Rev Sci Instrum ; 92(4): 043523, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243388

RESUMO

Turbulent electron temperature fluctuation measurement using a correlation electron cyclotron emission (CECE) radiometer has become an important diagnostic for studying energy transport in fusion plasmas, and its use is widespread in tokamaks (DIII-D, ASDEX Upgrade, Alcator C-Mod, Tore Supra, EAST, TCV, HL-2A, etc.). The CECE diagnostic typically performs correlation analysis between two closely spaced (within the turbulent correlation length) ECE channels that are dominated by uncorrelated thermal noise emission. This allows electron temperature fluctuations embedded in the thermal noise to be revealed and fluctuation level and spectra determined. We have demonstrated a new, improved CECE coherency-based analysis for calculating the temperature fluctuation frequency spectrum and level, which has been verified both numerically through the simulation of synthetic ECE radiometer data and through analysis of experimental data from the CECE system on DIII-D. The new formulation places coherency-based analysis on a firm foundational footing and corrects some currently published methodologies. This new method accurately accounts for bias error in the coherence function and correctly calculates noise levels for a fixed data record length. It provides excellent accuracy in determining temperature fluctuation level (e.g., <10% error) even for a small realization number in the ensemble average. The method also has a smaller uncertainty (i.e., error bar) in the power spectrum when compared to the more standard cross-power method when evaluated at low coherency. Direct calculation of system noise level using correlation between randomized intermediate frequency signals is recommended.

8.
Rev Sci Instrum ; 92(6): 063505, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243511

RESUMO

A combined Doppler backscattering/cross-polarization scattering (DBS/CPS) system is being deployed on MAST-U for simultaneous measurements of local density turbulence, turbulence flows, and magnetic turbulence. In this design, CPS shares the probing beam with the DBS and uses a separate parallel-viewing receiver system. In this study, we utilize a modified GENRAY 3D ray-tracing code to simulate the propagation of the probing and scattered beams. The contributions of different scattering locations along the entire beam trajectories are considered, and the corresponding local B̃ wavenumbers are estimated using the wavevector matching criterion. The wavenumber ranges of the local B̃ that are detectable to the CPS system are explored for simulated L- and H-mode plasmas.

9.
Phys Rev Lett ; 127(2): 025001, 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34296897

RESUMO

A thermal ion driven bursting instability with rapid frequency chirping, considered as an Alfvénic ion temperature gradient mode, has been observed in plasmas having reactor-relevant temperature in the DIII-D tokamak. The modes are excited over a wide spatial range from macroscopic device size to microturbulence size and the perturbation energy propagates across multiple spatial scales. The radial mode structure is able to expand from local to global in ∼0.1 ms and it causes magnetic topology changes in the plasma edge, which can lead to a minor disruption event. Since the mode is typically observed in the high ion temperature ≳10 keV and high-ß plasma regime, the manifestation of the mode in future reactors should be studied with development of mitigation strategies, if needed. This is the first observation of destabilization of the Alfvén continuum caused by the compressibility of ions with reactor-relevant ion temperature.

10.
Rev Sci Instrum ; 92(3): 033524, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820017

RESUMO

Final design studies in preparation for manufacturing have been performed for functional components of the vacuum portion of the ITER Low-Field Side Reflectometer (LFSR). These components consist of an antenna array, electron cyclotron heating (ECH) protection mirrors, phase calibration mirrors, and vacuum windows. Evaluation of these components was conducted at the LFSR test facility and DIII-D. The antenna array consists of six corrugated-waveguide antennas for simultaneous profile, fluctuation, and Doppler measurements. A diffraction grating, incorporated into the plasma-facing miter bend, provides protection of sensitive components from stray ECH at 170 GHz. For in situ phase calibration of the LFSR profile reflectometer, an embossed mirror is incorporated into the adjacent miter bend. Measurements of the radiated beam profile indicate that these components have a small, acceptable effect on mode conversion and beam quality. Baseline transmission characteristics of the dual-disk vacuum window are obtained and are used to guide ongoing developments. Preliminary simulations indicate that a surface-relief structure on the window surfaces can greatly improve transmission. The workability of real-time phase measurements was demonstrated on the DIII-D profile reflectometer. The new automated real-time analysis agrees well with the standard post-processing routine.

11.
Phys Rev Lett ; 122(11): 115001, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30951344

RESUMO

Plasma discharges with a negative triangularity (δ=-0.4) shape have been created in the DIII-D tokamak with a significant normalized beta (ß_{N}=2.7) and confinement characteristic of the high confinement mode (H_{98y2}=1.2) despite the absence of an edge pressure pedestal and no edge localized modes (ELMs). These inner-wall-limited plasmas have a similar global performance as a positive triangularity (δ=+0.4) ELMing H-mode discharge with the same plasma current, elongation and cross sectional area. For cases both of dominant electron cyclotron heating with T_{e}/T_{i}>1 and dominant neutral beam injection heating with T_{e}/T_{i}=1, turbulent fluctuations over radii 0.5<ρ<0.9 were reduced by 10-50% in the negative triangularity shape compared to the matching positive triangularity shape, depending on the radius and conditions.

12.
Rev Sci Instrum ; 89(10): 10H106, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399653

RESUMO

In this paper, we address the challenging question of measuring turbulence levels on the high magnetic field side (HFS) of tokamak plasmas. Although turbulence measurements on the HFS can provide a stringent constraint for the turbulence model validation, to date only low magnetic field side (LFS) measured turbulence has been used in validation studies. To address this issue, an eight channel Correlation Electron Cyclotron Emission (CECE) system at DIII-D was modified to probe both LFS and HFS. In contrast to the second harmonic extraordinary mode electron cyclotron resonance emission that is typically used in CECE, we show that it is possible to probe the HFS using fundamental O-mode electron cyclotron resonance emission. The required hardware modifications for the HFS measurements are presented here, and the potential issues in this measurement are discussed.

13.
Rev Sci Instrum ; 89(10): 10H107, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399735

RESUMO

Simulations and laboratory tests are used to design and optimize a quasi-optical system for cross-polarization scattering (CPS) measurements of magnetic turbulence on the DIII-D tokamak. The CPS technique uses a process where magnetic turbulence scatters electromagnetic radiation into the perpendicular polarization enabling a local measurement of the perturbing magnetic fluctuations. This is a challenging measurement that addresses the contribution of magnetic turbulence to anomalous thermal transport in fusion research relevant plasmas. The goal of the new quasi-optical design is to demonstrate the full spatial and wavenumber capabilities of the CPS diagnostic. The approach used consists of independently controlled and in vacuo aiming systems for the probe and scattered beams (55-75 GHz).

14.
Rev Sci Instrum ; 89(10): 10H112, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399744

RESUMO

Real-time phase calibration of the ITER profile reflectometer is essential due to the long plasma duration and expected waveguide path length changes during a discharge. Progress has been recently made in addressing this issue by employing a phase calibration technique on DIII-D that monitors calibration variations that occur during each plasma discharge. By installing a thin free-standing metallic wire (1 mm diameter) near the end of the overmoded waveguide transmission system (oriented perpendicular to the waveguide axis), the round-trip phase shift from the wire is detected simultaneously with the plasma phase shifts. Variations in the reflectometer round trip path length (∼26 m) are then calculated after each DIII-D plasma discharge, allowing the calibration phase to be accurately monitored and updated. The round-trip reflectometer path length is observed to vary by ∼3 mm (root mean square value) during a typical DIII-D discharge. Using the variations in calibration phase, the density profile measurement accuracy can be improved. Since the wire retro-reflected power is ∼0.01 of the plasma signal, minimal effect is observed on the reflected signal from the plasma. Importantly, through a suitable choice in wire diameter, the calibration signal can be made approximately independent of the V-band reflectometer launch polarization. This is particularly important on DIII-D since orthogonal X- and O-mode polarized beams are coupled into the same transmission waveguide and launch antenna.

15.
Rev Sci Instrum ; 89(10): 10H113, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399840

RESUMO

Cross-polarization scattering (CPS) provides localized magnetic fluctuation ( B ̃ ) measurements in fusion plasmas based on the process where B ̃ scatters electromagnetic radiation into the orthogonal polarization. The CPS system on DIII-D utilizes the probe beam of a Doppler backscattering (DBS) diagnostic combined with a cross-view CPS receiver system, which allows simultaneous density and B ̃ measurements with good spatial and wavenumber coverage. The interpretation of the signals is challenging due to the complex plasma propagation of the DBS probe beam and CPS receive beams. A synthetic diagnostic for CPS is therefore essential to interpret data and perform detailed validation tests of non-linear turbulence simulations. This work reports a first step toward a synthetic diagnostic for CPS utilizing GENRAY, a 3-D ray tracing code, to simulate the propagation of the probe and scattered rays. The local B ̃ wavenumber is calculated from the local O- and X-mode wavenumbers using the wave vector matching scattering condition. The CPS wavenumber values and spatial locations are determined by a complex consideration that includes the local density and B ̃ level, receive antenna pattern and orientation, scattering volume, wavenumber values detected at the various scattering centers, and alignment of the magnetic wave vector with the plane perpendicular to the magnetic field. The issue of a spurious CPS signal due to polarization mismatches for launch and receive is also discussed. It is suggested that simultaneous O- and X-mode DBS measurements should be utilized for better understanding of the CPS signal contamination when the cutoff locations for both polarizations are close.

16.
Rev Sci Instrum ; 89(10): 10H114, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399948

RESUMO

The λ ≈ 1 mm (f = 288 GHz) interferometer for the Lithium Tokamak Experiment-ß (LTX-ß) will use a chirped-frequency source and a centerstack-mounted retro-reflector mirror to provide electron line density measurements along a single radial chord at the midplane. The interferometer is unique in the use of a single source (narrow-band chirped-frequency interferometry) and a single beam splitter for separating and recombining the probe and reference beams. The current work provides a documentation of the interferometry hardware and evaluates the capabilities of the system as a far-forward collective scattering diagnostic. As such, the current optical setup is estimated to have a detection range of 0.4 ≲ k ⊥ ≲ 1.7 cm-1, while an improved layout will extend the upper k ⊥ limit to ∼3 cm-1. Measurements with the diagnostic on LTX are presented, showing interferometry results and scattered signal data. These diagnostics are expected to provide routine measurements on LTX-ß for high frequency coherent density oscillations (e.g., Alfvénic modes during neutral beam injection) as well as for broadband turbulence.

17.
Phys Rev Lett ; 120(13): 135002, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29694164

RESUMO

A new, long-lived limit cycle oscillation (LCO) regime has been observed in the edge of near zero torque high performance DIII-D tokamak plasma discharges. These LCOs are localized and composed of density turbulence, gradient drives, and E×B velocity shear damping (E and B are the local radial electric and total magnetic fields). Density turbulence sequentially acts as a predator (via turbulence transport) of profile gradients and a prey (via shear suppression) to the E×B velocity shear. Reported here for the first time is a unique spatiotemporal variation of the local E×B velocity, which is found to be essential for the existence of this system. The LCO system is quasistationary, existing from 3 to 12 plasma energy confinement times (∼30-900 LCO cycles) limited by hardware constraints. This plasma system appears to contribute strongly to the edge transport in these high performance and transient-free plasmas, as evident from oscillations in transport relevant edge parameters at LCO time scale.

18.
Rev Sci Instrum ; 88(5): 053502, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28571454

RESUMO

The frequency-modulated continuous-wave reflectometer on LTX (Lithium Tokamak Experiment) and the data analysis methods used for determining electron density profiles are described. The diagnostic uses a frequency range of 13.1-33.5 GHz, for covering a density range of 0.21-1.4×1013 cm-3 (in O-mode polarization) with a time resolution down to 8 µs. The design of the diagnostic incorporates the concept of an "optimized" source frequency sweep, which minimizes the large variation in the intermediate frequency signal due to a long dispersive transmission line. The quality of the raw data is dictated by the tuning characteristics of the microwave sources, as well as the group delay ripple in the transmission lines, which can generate higher-order nonlinearities in the frequency sweep. Both effects are evaluated for our diagnostic and best practices are presented for minimizing "artifacts" generated in the signals. The quality of the reconstructed profiles is also improved using two additional data analysis methods. First, the reflectometer data are processed as a radar image, where clutter due to echoes from the wall and backscattering from density fluctuations can be easily identified and removed. Second, a weighed least-squares lamination algorithm POLAN (POLynomial ANalysis) is used to reconstruct the electron density profile. Examples of density profiles in LTX are presented, along with comparisons to measurements from the Thomson scattering and the λ = 1 mm interferometer diagnostics.

19.
Rev Sci Instrum ; 87(11): 11E601, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910576

RESUMO

We present new measurements of internal magnetic fluctuations obtained with a novel eight channel cross polarization scattering (CPS) system installed on the DIII-D tokamak. Measurements of internal, localized magnetic fluctuations provide a window on an important physics quantity that we heretofore have had little information on. Importantly, these measurements provide a new ability to challenge and test linear and nonlinear simulations and basic theory. The CPS method, based upon the scattering of an incident microwave beam into the opposite polarization by magnetic fluctuations, has been significantly extended and improved over the method as originally developed on the Tore Supra tokamak. A new scattering geometry, provided by a unique probe beam, is utilized to improve the spatial localization and wavenumber range. Remotely controllable polarizer and mirror angles allow polarization matching and wavenumber selection for a range of plasma conditions. The quasi-optical system design, its advantages and challenges, as well as important physics validation tests are presented and discussed. Effect of plasma beta (ratio of kinetic to magnetic pressure) on both density and magnetic fluctuations is studied and it is observed that internal magnetic fluctuations increase with beta. During certain quiescent high confinement operational regimes, coherent low frequency modes not detected by magnetic probes are detected locally by CPS diagnostics.

20.
Rev Sci Instrum ; 87(11): 11E719, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910620

RESUMO

A new model-based technique for fast estimation of the pedestal electron density gradient has been developed. The technique uses ordinary mode polarization profile reflectometer time delay data and does not require direct profile inversion. Because of its simple data processing, the technique can be readily implemented via a Field-Programmable Gate Array, so as to provide a real-time density gradient estimate, suitable for use in plasma control systems such as envisioned for ITER, and possibly for DIII-D and Experimental Advanced Superconducting Tokamak. The method is based on a simple edge plasma model with a linear pedestal density gradient and low scrape-off-layer density. By measuring reflectometer time delays for three adjacent frequencies, the pedestal density gradient can be estimated analytically via the new approach. Using existing DIII-D profile reflectometer data, the estimated density gradients obtained from the new technique are found to be in good agreement with the actual density gradients for a number of dynamic DIII-D plasma conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...