Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(25): 45824-45831, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36522978

RESUMO

There are limited fiber-based single-mode laser sources over the visible and near infrared range. Nonlinear conversion through four-wave mixing in photonic crystal fibers allows for the generation of new wavelengths far from a pump wavelength. Utilizing an all-fiber spliced configuration, we convert 1064 nm light into a W-level signal in the 750 nm - 820 nm spectral region. We demonstrate over 7.9 watts in the signal band, out of a custom photonic crystal fiber with M2 < 1.15. The input peak power as well as fiber length can be selected to keep the converted power in a 0.6 nm narrow emission band or broaden the output to 45 nm spectral band with spectral density greater than 50 mW/nm by pumping with higher peak powers.

2.
Opt Express ; 25(12): 13903-13915, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28788833

RESUMO

A nanoparticle (NP) doping technique was developed for fabricating erbium (Er)- and holmium (Ho)-doped silica-based optical fibers for high energy lasers. Slope efficiencies in excess of 74% were realized for Er NP doping in a single mode fiber based master oscillator power amplifier (MOPA) and 53% with multi-Watt-level output in a resonantly cladding-pumped power oscillator laser configuration based on a double-clad fiber. Cores comprising Ho doped LaF3 and Lu2O3 nanoparticles exhibited slope efficiencies as high as 85% at 2.09 µm in a laser configuration. To the best of the authors' knowledge, this is the first report of a holmium nanoparticle doped fiber laser as well as the highest efficiency and power output reported from an erbium nanoparticle doped fiber laser.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...