Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 33(12): 14270-14280, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31682515

RESUMO

Activation of platelets and neutrophils in septic shock results in the formation of microvascular clots containing an intricate scaffold of fibrin with neutrophil extracellular traps (NETs) DNA. NETs contain multiple components that might impact endogenous fibrinolysis, resulting in failure to lyse clots in the microcirculation and residual systemic microthrombosis. We propose herein that the reservoir of human neutrophil elastase (HNE) on NETs may directly interfere with the fibrinolytic mechanism via a plasminogen proteolytic pathway. To investigate this mechanism, we constructed fibrin-NETs matrices by seeding and activating neutrophils onto a fibrin surface and monitored plasminogen activation or degradation. We demonstrate that the elastase activity of HNE-DNA complexes is protected from inhibition by plasma antiproteases and sustains its ability to degrade plasminogen. Using mass spectrometry proteomic analysis, we identified plasminogen fragments composed of kringle (K) domains (K1+2+3, k1+2+3+4) and the serine protease (SP) region (K5-SP). We further demonstrate that patients with septic shock with disseminated intravascular coagulation have circulating HNE-DNA complexes, HNE-derived plasminogen fragments, a low plasminogen concentration, and a reduced capacity to generate plasmin onto fibrin. In conclusion, we show that NETs bearing active HNE-DNA complexes reduce plasminogen into fragments, thus impairing fibrinolysis by decreasing the local plasminogen concentration, plasminogen binding to fibrin, and localized plasmin formation.-Barbosa da Cruz, D., Helms, J., Aquino, L. R., Stiel, L., Cougourdan, L., Broussard, C., Chafey, P., Riès-Kautt, M., Meziani, F., Toti, F., Gaussem, P., Anglés-Cano, E. DNA-bound elastase of neutrophil extracellular traps degrades plasminogen, reduces plasmin formation, and decreases fibrinolysis: proof of concept in septic shock plasma.


Assuntos
Armadilhas Extracelulares/enzimologia , Fibrinolisina/metabolismo , Fibrinólise/fisiologia , Elastase Pancreática/metabolismo , Plasminogênio/metabolismo , Choque Séptico/sangue , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Coagulação Intravascular Disseminada/sangue , Humanos , Pessoa de Meia-Idade , Elastase Pancreática/genética
2.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 8): 2217-31, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25084340

RESUMO

The adsorption of Rb(+), Cs(+), Mn(2+), Co(2+) and Yb(3+) onto the positively charged hen egg-white lysozyme (HEWL) has been investigated by solving 13 X-ray structures of HEWL crystallized with their chlorides and by applying electrospray ionization mass spectrometry (ESI-MS) first to dissolved protein crystals and then to the protein in buffered salt solutions. The number of bound cations follows the order Cs(+) < Mn(2+) ≃ Co(2+) < Yb(3+) at 293 K. HEWL binds less Rb(+) (qtot = 0.7) than Cs(+) (qtot = 3.9) at 100 K. Crystal flash-cooling drastically increases the binding of Cs(+), but poorly affects that of Yb(3+), suggesting different interactions. The addition of glycerol increases the number of bound Yb(3+) cations, but only slightly increases that of Rb(+). HEWL titrations with the same chlorides, followed by ESI-MS analysis, show that only about 10% of HEWL binds Cs(+) and about 40% binds 1-2 Yb(3+) cations, while the highest binding reaches 60-70% for protein binding 1-3 Mn(2+) or Co(2+) cations. The binding sites identified by X-ray crystallography show that the monovalent Rb(+) and Cs(+) preferentially bind to carbonyl groups, whereas the multivalent Mn(2+), Co(2+) and Yb(3+) interact with carboxylic groups. This work elucidates the basis of the effect of the Hofmeister cation series on protein solubility.


Assuntos
Cátions , Cristalografia por Raios X/métodos , Proteínas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Adsorção
3.
Biophys J ; 101(2): 486-93, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21767502

RESUMO

Amyloidoses are increasingly recognized as a major public health concern in Western countries. All amyloidoses share common morphological, structural, and tinctorial properties. These consist of staining by specific dyes, a fibrillar aspect in electron microscopy and a typical cross-ß folding in x-ray diffraction patterns. Most studies that aim at deciphering the amyloid structure rely on fibers generated in vitro or extracted from tissues using protocols that may modify their intrinsic structure. Therefore, the fine details of the in situ architecture of the deposits remain unknown. Here, we present to our knowledge the first data obtained on ex vivo human renal tissue sections using x-ray microdiffraction. The typical cross-ß features from fixed paraffin-embedded samples are similar to those formed in vitro or extracted from tissues. Moreover, the fiber orientation maps obtained across glomerular sections reveal an intrinsic texture that is correlated with the glomerulus morphology. These results are of the highest importance to understanding the formation of amyloid deposits and are thus expected to trigger new incentives for tissue investigation. Moreover, the access to intrinsic structural parameters such as fiber size and orientation using synchrotron x-ray microdiffraction, could provide valuable information concerning in situ mechanisms and deposit formation with potential benefits for diagnostic and therapeutic purposes.


Assuntos
Amiloide/química , Síncrotrons , Difração de Raios X , Amiloidose/metabolismo , Amiloidose/patologia , Anisotropia , Humanos , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia
4.
Methods Mol Biol ; 363: 153-74, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17272841

RESUMO

The physical chemistry of crystal growth can help to identify directions in which to look for improved crystal properties. In this chapter, we summarize how crystal growth depends on parameters that can be controlled experimentally, and relate them to the tools available for optimizing a particular crystal form for crystal shape, volume, and diffraction quality. Our purpose is to sketch the conceptual basis of optimization and to provide sample protocols derived from those foundations. We hope to assist even those who chose not to use systematic methods by enabling them to carry out rudimentary optimization searches armed with a better understanding of how the underlying physical chemistry operates.


Assuntos
Físico-Química , Cristalização/métodos , Substâncias Macromoleculares/química , Fenômenos Químicos
5.
Acta Crystallogr D Biol Crystallogr ; 58(Pt 10 Pt 1): 1576-81, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12351865

RESUMO

Hofmeister anion series are studied to examine the coupled influence of pH and ionic strength on the solubility of previously desalted lysozyme. Solubility curves are measured at pH 4.3 and 8.3 and 18 degrees C for nitrate, para-toluenesulfonate, citrate, sulphate, phosphate, and acetate. Extreme low ionic strength is explored, confirming the decrease of lysozyme solubility while increasing the protein net charge and the ionic strength. The classification of specific salt effects takes into account the valence of the anions with respect to the protein net charge.


Assuntos
Muramidase/química , Animais , Ânions , Cristalização , Eletroquímica , Concentração de Íons de Hidrogênio , Concentração Osmolar , Solubilidade
6.
Acta Crystallogr D Biol Crystallogr ; 58(Pt 10 Pt 1): 1582-7, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12351866

RESUMO

The influence of salt nature and concentration on tetragonal lysozyme chloride crystal solubility is presented for a set of mono-, di- and trivalent cations (Cs(+), Rb(+), Mn(2+), Co(2+) and Yb(3+)). The results show that cations have as strong an effect on protein solubility as anions and that they present their own particular effects as co-ions. Indeed, after decreasing at low ionic strength, lysozyme solubility increases with high concentration of polyvalent cations, probably due to co-ion binding and therefore the concomitant increase of the net charge of the protein-salt complex. These new results are discussed in order to progress in the understanding of the crystallisation process at the atomic level.


Assuntos
Muramidase/química , Animais , Cátions , Cloretos/química , Cristalização , Solubilidade , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...