Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 14(7): 1299-1309, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36881648

RESUMO

Increased ATP release and its extracellular catabolism through CD73 (ecto-5'-nucleotidase) lead to the overactivation of adenosine A2A receptors (A2AR), which occurs in different brain disorders. A2AR blockade blunts mood and memory dysfunction caused by repeated stress, but it is unknown if increased ATP release coupled to CD73-mediated formation of extracellular adenosine is responsible for A2AR overactivation upon repeated stress. This was now investigated in adult rats subject to repeated stress for 14 consecutive days. Frontocortical and hippocampal synaptosomes from stressed rats displayed an increased release of ATP upon depolarization, coupled to an increased density of vesicular nucleotide transporters and of CD73. The continuous intracerebroventricular delivery of the CD73 inhibitor α,ß-methylene ADP (AOPCP, 100 µM) during restraint stress attenuated mood and memory dysfunction. Slice electrophysiological recordings showed that restraint stress decreased long-term potentiation both in prefrontocortical layer II/III-layer V synapses and in hippocampal Schaffer fibers-CA1 pyramid synapses, which was prevented by AOPCP, an effect occluded by adenosine deaminase and by the A2AR antagonist SCH58261. These results indicate that increased synaptic ATP release coupled to CD73-mediated formation of extracellular adenosine contributes to mood and memory dysfunction triggered by repeated restraint stress. This prompts considering interventions decreasing ATP release and CD73 activity as novel strategies to mitigate the burden of repeated stress.


Assuntos
5'-Nucleotidase , Adenosina , Animais , Ratos , 5'-Nucleotidase/metabolismo , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Sinapses/metabolismo , Sinaptossomos/metabolismo , Estresse Fisiológico , Fenômenos Eletrofisiológicos
2.
Mol Neurobiol ; 60(3): 1659-1674, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36547848

RESUMO

Extracellular ATP can be a danger signal, but its role in striatal circuits afflicted in Parkinson's disease (PD) is unclear and was now investigated. ATP was particularly released at high stimulation intensities from purified striatal nerve terminals of mice, which were endowed with different ATP-P2 receptors (P2R), although P2R antagonists did not alter corticostriatal transmission or plasticity. Instead, ATP was extracellularly catabolized into adenosine through CD73 to activate adenosine A2A receptors (A2AR) modulating corticostriatal long-term potentiation (LTP) in mice. In the presymptomatic phase of a 6-hydroxydopamine rat model of PD, ATP release from striatal nerve terminals was increased and was responsible for a greater impact of CD73 and A2AR on corticostriatal LTP. These observations identify increased ATP release and ATP-derived formation of extracellular adenosine bolstering A2AR activation as a key pathway responsible for abnormal synaptic plasticity in circuits involved in the onset of PD motor symptoms. The translation of these findings to humans prompts extending the use of A2AR antagonists from only co-adjuvants of motor control in Parkinsonian patients to neuroprotective drugs delaying the onset of motor symptoms.


Assuntos
Adenosina , Doença de Parkinson , Ratos , Humanos , Camundongos , Animais , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Potenciação de Longa Duração , Plasticidade Neuronal
3.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36361618

RESUMO

Adenosine A2A receptors (A2AR) control fear memory and the underlying processes of synaptic plasticity in the amygdala. In other brain regions, A2AR activation is ensured by ATP-derived extracellular adenosine formed by ecto-5'-nucleotidase or CD73. We now tested whether CD73 is also responsible to provide for the activation of A2AR in controlling fear memory and amygdala long-term potentiation (LTP). The bilateral intracerebroventricular injection of the CD73 inhibitor αß-methylene ADP (AOPCP, 1 nmol/ventricle/day) phenocopied the effect of the A2AR blockade by decreasing the expression of fear memory, an effect disappearing in CD73-knockout (KO) mice and in forebrain neuronal A2AR-KO mice. In the presence of PPADS (20 µM) to eliminate any modification of ATP/ADP-mediated P2 receptor effects, both AOPCP (100 µM) and the A2AR antagonist, SCH58261 (50 nM), decreased LTP magnitude in synapses of projection from the external capsula into the lateral amygdala, an effect eliminated in slices from both forebrain neuronal A2AR-KO mice and CD73-KO mice. These data indicate a key role of CD73 in the process of A2AR-mediated control of fear memory and underlying synaptic plasticity processes in the amygdala, paving the way to envisage CD73 as a new therapeutic target to interfere with abnormal fear-like emotional processing.


Assuntos
5'-Nucleotidase , Receptor A2A de Adenosina , Camundongos , Animais , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Adenosina/metabolismo , Camundongos Endogâmicos C57BL , Tonsila do Cerebelo/metabolismo , Camundongos Knockout , Medo/fisiologia , Difosfato de Adenosina , Trifosfato de Adenosina/metabolismo
4.
Antioxidants (Basel) ; 11(1)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35052661

RESUMO

One of the most important characteristics of the brain compared to other organs is its elevated metabolic demand. Consequently, neurons consume high quantities of oxygen, generating significant amounts of reactive oxygen species (ROS) as a by-product. These potentially toxic molecules cause oxidative stress (OS) and are associated with many disorders of the nervous system, where pathological processes such as aberrant protein oxidation can ultimately lead to cellular dysfunction and death. Epilepsy, characterized by a long-term predisposition to epileptic seizures, is one of the most common of the neurological disorders associated with OS. Evidence shows that increased neuronal excitability-the hallmark of epilepsy-is accompanied by neuroinflammation and an excessive production of ROS; together, these factors are likely key features of seizure initiation and propagation. This review discusses the role of OS in epilepsy, its connection to neuroinflammation and the impact on synaptic function. Considering that the pharmacological treatment options for epilepsy are limited by the heterogeneity of these disorders, we also introduce the latest advances in anti-epileptic drugs (AEDs) and how they interact with OS. We conclude that OS is intertwined with numerous physiological and molecular mechanisms in epilepsy, although a causal relationship is yet to be established.

6.
Biol Psychiatry ; 88(12): 945-954, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32711953

RESUMO

BACKGROUND: As an integrator of molecular pathways, mTOR (mammalian target of rapamycin) has been associated with diseases including neurodevelopmental, psychiatric, and neurodegenerative disorders such as autism spectrum disorder, schizophrenia, and Huntington's disease. An important brain area involved in all these diseases is the striatum. However, the mechanisms behind how mTOR is involved in striatal physiology and its relative role in distinct neuronal populations in these striatal-related diseases still remain to be clarified. METHODS: Using Drd1-Cre mTOR-conditional knockout male mice, we combined behavioral, biochemical, electrophysiological, and morphological analysis aiming to untangle the role of mTOR in direct pathway striatal projection neurons and how this would impact on striatal physiology. RESULTS: Our results indicate deep behavioral changes in absence of mTOR in Drd1-expressing neurons such as decreased spontaneous locomotion, impaired social interaction, and decreased marble-burying behavior. These alterations were accompanied by a Kv1.1-induced increase in the fast phase of afterhyperpolarization and coincident decreased distal spine density in striatal direct pathway striatal projection neurons. The physiological changes were mechanistically independent of protein synthesis but sensitive to pharmacological blockade of transforming protein RhoA activity. CONCLUSIONS: These results identify mTOR signaling as an important regulator of striatal functions through an intricate mechanism involving RhoA and culminating in Kv1.1 overfunction, which could be targeted to treat striatal-related monogenic disorders associated with the mTOR signaling pathway.


Assuntos
Transtorno do Espectro Autista , Sirolimo , Animais , Corpo Estriado/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
7.
Eur J Neurosci ; 51(6): 1388-1402, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31549447

RESUMO

The striatum is mainly composed by medium spiny neurons (95 %) (MSNs). Although outnumbered, in other brain regions such as the hippocampus and the cortex, somatostatin interneurons (SSTi) are known to control and fine-tune the activity of principal cells. This information is still fragmented for the striatum. Here, we questioned the striatal functional consequences of the selective ablation of SSTi in the striatum at the behavioural and cellular levels. We identified increased excitability coupled with decreased distal spine density in MSNs from SSTi-ablated mice. Although the ethological behavioural analysis did not reveal differences between the groups, SSTi-ablated mice were significantly more sensitive to the locomotor effects of cocaine without changes in motivation. This was accompanied by increased expression of the dopamine transporter (DAT) in the ventral striatum. Altogether, we show that SSTi are important players in the maintenance of MSN excitability and spine density impacting on mechanisms towards hyperdopaminergic states.


Assuntos
Cocaína , Animais , Cocaína/farmacologia , Corpo Estriado , Interneurônios , Camundongos , Camundongos Transgênicos , Neurônios , Somatostatina
8.
Handb Clin Neurol ; 164: 431-452, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31604561

RESUMO

Olfactory dysfunction seems to occur earlier than classic motor and cognitive symptoms in many neurodegenerative diseases, including Parkinson's disease (PD) and Alzheimer's disease (AD). Thus, the use of the olfactory system as a clinical marker for neurodegenerative diseases is helpful in the characterization of prodromal stages of these diseases, early diagnostic strategies, differential diagnosis, and, potentially, prediction of treatment success. The use of genetic and neurotoxin animal models has contributed to the understanding of the mechanisms underlying olfactory dysfunction in a number of neurodegenerative diseases. In this chapter, we provide an overview of behavioral and neurochemical alterations observed in animal models of different neurodegenerative diseases (such as genetic and Aß infusion models for AD and neurotoxins and genetic models of PD), in which olfactory dysfunction has been described.


Assuntos
Doenças Neurodegenerativas/fisiopatologia , Transtornos do Olfato/fisiopatologia , Doença de Parkinson/fisiopatologia , Olfato/fisiologia , Animais , Modelos Animais de Doenças , Humanos , Doenças Neurodegenerativas/induzido quimicamente , Neurotoxinas/farmacologia , Transtornos do Olfato/induzido quimicamente
9.
J Neurosci ; 39(38): 7513-7528, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31363062

RESUMO

The regulation of the striatum by the GPCR signaling through neuromodulators is essential for its physiology and physiopathology, so it is necessary to know all the compounds of these pathways. In this study, we identified a new important partner of the dopaminergic pathway: GPRIN3 (a member of the GPRIN family). GPRIN3 is highly expressed in the striatum but with undefined function. Cell sorting of medium spiny neurons (MSNs) in indirect MSNs and direct MSNs indicated the presence of the GPRIN3 gene in both populations with a preferential expression in indirect MSNs. This led us to generate GPRIN3 KO mice by CRISPR/Cas9 and test male animals to access possible alterations in morphological, electrophysiological, and behavioral parameters following its absence. 3D reconstruction analysis of MSNs revealed increased neuronal arborization in GPRIN3 KO and modified passive and active electrophysiological properties. These cellular alterations were coupled with increased motivation and cocaine-induced hyperlocomotion. Additionally, using a specific indirect MSN knockdown, we showed a preferential role for GPRIN3 in indirect MSNs related to the D2R signaling. Together, these results show that GPRIN3 is a mediator of D2R function in the striatum playing a major role in striatal physiology.SIGNIFICANCE STATEMENT The striatum is the main input of the basal ganglia processing information from different brain regions through the combined actions of direct pathway neurons and indirect pathway neurons. Both neuronal populations are defined by the expression of dopamine D1R or D2R GPCRs, respectively. How these neurons signal to the respective G-protein is still debatable. Here we identified GPRIN3 as a putative selective controller of D2R function in the striatum playing a critical role in striatal-associated behaviors and cellular functions. This study represents the identification of a new target to tackle striatal dysfunction associated with the D2R, such as schizophrenia, Parkinson's disease, and drug addiction.


Assuntos
Corpo Estriado/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Masculino , Camundongos , Camundongos Knockout , Transdução de Sinais/fisiologia
10.
Neurobiol Dis ; 132: 104570, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31394204

RESUMO

Adenosine A2A receptors (A2AR) overfunction causes synaptic and memory dysfunction in early Alzheimer's disease (AD). In a ß-amyloid (Aß1-42)-based model of early AD, we now unraveled that this involves an increased synaptic release of ATP coupled to an increased density and activity of ecto-5'-nucleotidase (CD73)-mediated formation of adenosine selectively activating A2AR. Thus, CD73 inhibition with α,ß-methylene-ADP impaired long-term potentiation (LTP) in mouse hippocampal slices, which is occluded upon previous superfusion with the A2AR antagonist SCH58261. Furthermore, α,ß-methylene-ADP did not alter LTP amplitude in global A2AR knockout (KO) and in forebrain neuron-selective A2AR-KO mice, but inhibited LTP amplitude in astrocyte-selective A2AR-KO mice; this shows that CD73-derived adenosine solely acts on neuronal A2AR. In agreement with the concept that ATP is a danger signal in the brain, ATP release from nerve terminals is increased after intracerebroventricular Aß1-42 administration, together with CD73 and A2AR upregulation in hippocampal synapses. Importantly, this increased CD73 activity is critically required for Aß1-42 to impair synaptic plasticity and memory since Aß1-42-induced synaptic and memory deficits were eliminated in CD73-KO mice. These observations establish a key regulatory role of CD73 activity over neuronal A2AR and imply CD73 as a novel target for modulation of early AD.


Assuntos
5'-Nucleotidase/metabolismo , Adenosina/metabolismo , Doença de Alzheimer/metabolismo , Potenciação de Longa Duração/fisiologia , Receptor A2A de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
11.
Eur J Neurosci ; 47(9): 1127-1134, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29570875

RESUMO

Prefrontal cortex (PFC) circuits are modulated by dopamine acting on D1 - and D2 -like receptors, which are pharmacologically exploited to manage neuropsychiatric conditions. Adenosine A2A receptors (A2A R) also control PFC-related responses and A2A R antagonists are potential anti-psychotic drugs. As tight antagonistic A2A R-D2 R and synergistic A2A R-D1 R interactions occur in other brain regions, we now investigated the crosstalk between A2A R and D1 /D2 R controlling synaptic transmission between layers II/III and V in mouse PFC coronal slices. Dopamine decreased synaptic transmission, a presynaptic effect based on the parallel increase in paired-pulse responses. Dopamine inhibition was prevented by the D2 R-like antagonist sulpiride but not by the D1 R antagonist SCH23390 and was mimicked by the D2 R agonist sumanirole, but not by the agonists of either D4 R (A-412997) or D3 R (PD128907). Dopamine inhibition was prevented by the A2A R antagonist, SCH58261, and attenuated in A2A R knockout mice. Accordingly, triple-labelling immunocytochemistry experiments revealed the co-localization of A2A R and D2 R immunoreactivity in glutamatergic (vGluT1-positive) nerve terminals of the PFC. This reported positive A2A R-D2 R interaction controlling PFC synaptic transmission provides a mechanistic justification for the anti-psychotic potential of A2A R antagonists.


Assuntos
Agonistas de Dopamina/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Receptor A2A de Adenosina/efeitos dos fármacos , Receptores de Dopamina D2/efeitos dos fármacos , Adenosina/farmacologia , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Dopamina/farmacologia , Ácido Glutâmico/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Transmissão Sináptica/fisiologia
12.
J Appl Physiol (1985) ; 123(1): 161-171, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28385921

RESUMO

Parkinson's disease (PD) prodromal stages comprise neuropsychiatric perturbations that critically compromise a patient's quality of life. These nonmotor symptoms (NMS) are associated with exacerbated innate immunity, a hallmark of overt PD. Physical exercise (PE) has the potential to improve neuropsychiatric deficits and to modulate immune network including receptor for advanced glycation end products (RAGE) and Toll-like receptors (TLRs) in distinct pathological settings. Accordingly, the present study aimed to test the hypothesis that PE 1) alleviates PD NMS and 2) modulates neuroimmune RAGE network in experimental PD. Adult Wistar rats subjected to long-term mild treadmill were administered intranasally with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and probed for PD NMS before the onset of motor abnormalities. Twelve days after MPTP, neuroimmune RAGE network transcriptomics (real-time quantitative PCR) was analyzed in frontal cortex, hippocampus, and striatum. Untrained MPTP animals displayed habit-learning and motivational deficits without gross motor impairments (cued version of water-maze, splash, and open-field tests, respectively). A suppression of RAGE and neuroimmune-related genes was observed in frontal cortex on chemical and physical stressors (untrained MPTP: RAGE, TLR5 and -7, and p22 NADPH oxidase; saline-trained animals: RAGE, TLR1 and -5 to -11, TNF-α, IL-1ß, and p22 NADPH oxidase), suggesting the recruitment of compensatory mechanisms to restrain innate inflammation. Notably, trained MPTP animals displayed normal cognitive/motivational performances. Additionally, these animals showed normal RAGE expression and neuroprotective PD-related DJ-1 gene upregulation in frontal cortex when compared with untrained MPTP animals. These findings corroborate PE efficacy in improving PD NMS and newly identify RAGE network as a neural substrate for exercise intervention. Additional research is warranted to unveil functional consequences of PE-induced modulation of RAGE/DJ-1 transcriptomics in PD premotor stages.NEW & NOTEWORTHY This study newly shows that physical exercise (PE) corrects nonmotor symptoms of the intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of experimental parkinsonism. Additionally, we show that suppression of neuroimmune receptor for advanced glycation end products (RAGE) network occurs in frontal cortex on chemical (MPTP) and physical (PE) interventions. Finally, PE normalizes frontal cortical RAGE transcriptomics and upregulates the neuroprotective DJ-1 gene in the intranasal MPTP model of experimental parkinsonism.


Assuntos
Neuroimunomodulação/fisiologia , Transtornos Parkinsonianos/imunologia , Transtornos Parkinsonianos/reabilitação , Condicionamento Físico Animal/fisiologia , Receptor para Produtos Finais de Glicação Avançada/biossíntese , Receptor para Produtos Finais de Glicação Avançada/imunologia , Animais , Encéfalo/imunologia , Encéfalo/metabolismo , Teste de Esforço/métodos , Masculino , Condicionamento Físico Animal/métodos , Ratos , Ratos Wistar , Resultado do Tratamento
13.
Brain Res ; 1663: 78-86, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28288867

RESUMO

Moderate traumatic brain injury (TBI) might increase the vulnerability to neuronal neurodegeneration, but the basis of such selective neuronal susceptibility has remained elusive. In keeping with the disruption of the blood-brain barrier (BBB) caused by TBI, changes in BBB permeability following brain injury could facilitate the access of xenobiotics into the brain. To test this hypothesis, here we evaluated whether TBI would increase the susceptibility of nigrostriatal dopaminergic fibers to the systemic administration of 6-hydroxydopamine (6-OHDA), a classic neurotoxin used to trigger a PD-like phenotype in mice, but that in normal conditions is unable to cross the BBB. Adult Swiss mice were submitted to a moderate TBI using a free weight-drop device and, 5h later, they were injected intraperitoneally with a single dose of 6-OHDA (100mg/kg). Afterwards, during a period of 4weeks, the mice were submitted to a battery of behavioral tests, including the neurological severity score (NSS), the open field and the rotarod. Animals from the TBI plus 6-OHDA group displayed significant motor and neurological impairments that were improved by acute l-DOPA administration (25mg/kg, i.p.). Moreover, the observation of the motor deficits correlates with (i) a significant decrease in the tyrosine hydroxylase levels mainly in the rostral striatum and (ii) a significant increase in the levels of striatal glial fibrillary acidic protein (GFAP) levels. On the whole, the present findings demonstrate that a previous moderate TBI event increases the susceptibility to motor, neurological and neurochemical alterations induced by systemic administration of the dopaminergic neurotoxin 6-OHDA in mice.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Oxidopamina/toxicidade , Animais , Comportamento Animal , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Lesões Encefálicas/metabolismo , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/patologia , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Levodopa/metabolismo , Camundongos , Doenças Neurodegenerativas , Síndromes Neurotóxicas/metabolismo , Oxidopamina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
14.
Neurosci Lett ; 638: 162-166, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28007645

RESUMO

GPR37 is an orphan G protein-coupled receptor highly expressed in the brain. The precise function of GPR37 is still unknown, but a number of evidences indicate it modulates the dopaminergic system. Here, we aimed to determine the role of GPR37 on the control of cocaine-mediated electrophysiological effects (synaptic transmission and short-term plasticity) in corticostriatal synapses. Accordingly, we evaluated basal synaptic transmission and paired-pulse stimulation (PPS) in wild-type and GPR37KO mice slices. Regardless of the genotype, a low concentration of cocaine (2µM) did not modify basal synaptic transmission. Conversely, a higher dose of cocaine (30µM) decreased synaptic transmission in both genotypes, although with different intensities: approximately 30% in slices from wild-type mice and 45% in slices from GPR37-KO mice. On the other hand, no differences in PPS ratio were observed between wild-type and GPR37-KO cocaine-treated mice. Overall, our data suggest that GPR37 is involved in cocaine-induced modification of basal synaptic transmission without modifying cocaine effects in short-term plasticity.


Assuntos
Cocaína/farmacologia , Corpo Estriado/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Animais , Corpo Estriado/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/efeitos dos fármacos , Receptores Acoplados a Proteínas G/genética
15.
Neuropsychopharmacology ; 41(12): 2862-2871, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27312408

RESUMO

The consumption of caffeine modulates working and reference memory through the antagonism of adenosine A2A receptors (A2ARs) controlling synaptic plasticity processes in hippocampal excitatory synapses. Fear memory essentially involves plastic changes in amygdala circuits. However, it is unknown if A2ARs in the amygdala regulate synaptic plasticity and fear memory. We report that A2ARs in the amygdala are enriched in synapses and located to glutamatergic synapses, where they selectively control synaptic plasticity rather than synaptic transmission at a major afferent pathway to the amygdala. Notably, the downregulation of A2ARs selectively in the basolateral complex of the amygdala, using a lentivirus with a silencing shRNA (small hairpin RNA targeting A2AR (shA2AR)), impaired fear acquisition as well as Pavlovian fear retrieval. This is probably associated with the upregulation and gain of function of A2ARs in the amygdala after fear acquisition. The importance of A2ARs to control fear memory was further confirmed by the ability of SCH58261 (0.1 mg/kg; A2AR antagonist), caffeine (5 mg/kg), but not DPCPX (0.5 mg/kg; A1R antagonist), treatment for 7 days before fear conditioning onwards, to attenuate the retrieval of context fear after 24-48 h and after 7-8 days. These results demonstrate that amygdala A2ARs control fear memory and the underlying process of synaptic plasticity in this brain region. This provides a neurophysiological basis for the association between A2AR polymorphisms and phobia or panic attacks in humans and prompts a therapeutic interest in A2ARs to manage fear-related pathologies.


Assuntos
Tonsila do Cerebelo/metabolismo , Memória/fisiologia , Receptor A2A de Adenosina/metabolismo , Transmissão Sináptica/fisiologia , Estimulação Acústica/efeitos adversos , Antagonistas do Receptor A1 de Adenosina/farmacologia , Antagonistas do Receptor A1 de Adenosina/toxicidade , Antagonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/toxicidade , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Medo/efeitos dos fármacos , Medo/fisiologia , Locomoção/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Camundongos , Camundongos Endogâmicos C57BL , Pirimidinas/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Triazinas/farmacologia , Triazóis/farmacologia , Xantinas/farmacologia
17.
Behav Brain Res ; 301: 43-54, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26707254

RESUMO

Parkinson's disease (PD) is characterized by motor dysfunction associated with dopaminergic degeneration in the dorsolateral striatum (DLS). However, motor symptoms in PD are often preceded by short-term memory deficits, which have been argued to involve deregulation of medial prefrontal cortex (mPFC). We now used a 6-hydroxydopamine (6-OHDA) rat PD model to explore if alterations of synaptic plasticity in DLS and mPFC underlie short-term memory impairments in PD prodrome. The bilateral injection of 6-OHDA (20µg/hemisphere) in the DLS caused a marked loss of dopaminergic neurons in the substantia nigra (>80%) and decreased monoamine levels in the striatum and PFC, accompanied by motor deficits evaluated after 21 days in the open field and accelerated rotarod. A lower dose of 6-OHDA (10µg/hemisphere) only induced a partial degeneration (about 60%) of dopaminergic neurons in the substantia nigra with no gross motor impairments, thus mimicking an early premotor stage of PD. Notably, 6-OHDA (10µg)-lesioned rats displayed decreased monoamine levels in the PFC as well as short-term memory deficits evaluated in the novel object discrimination and in the modified Y-maze tasks; this was accompanied by a selective decrease in the amplitude of long-term potentiation in the mPFC, but not in DLS, without changes of synaptic transmission in either brain regions. These results indicate that the short-term memory dysfunction predating the motor alterations in the 6-OHDA model of PD is associated with selective changes of information processing in PFC circuits, typified by persistent changes of synaptic plasticity.


Assuntos
Potenciação de Longa Duração/fisiologia , Transtornos da Memória/fisiopatologia , Memória de Curto Prazo/fisiologia , Transtornos Parkinsonianos/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Animais , Discriminação Psicológica/fisiologia , Método Duplo-Cego , Masculino , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/patologia , Atividade Motora , Oxidopamina , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/psicologia , Córtex Pré-Frontal/patologia , Ratos Wistar , Teste de Desempenho do Rota-Rod , Memória Espacial/fisiologia , Transmissão Sináptica/fisiologia , Técnicas de Cultura de Tecidos
18.
Mol Neurobiol ; 53(6): 3891-3899, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26164273

RESUMO

The dorsolateral striatum (DLS) processes motor and non-motor functions and undergoes extensive dopaminergic degeneration in Parkinson's disease (PD). The nigrostriatal dopaminergic degeneration also affects other brain areas including the pre-frontal cortex (PFC), which has been associated with the appearance of anhedonia and depression at pre-motor phases of PD. Using behavioral, neurochemical, and electrophysiological approaches, we investigated the temporal dissociation between the role of the DLS and PFC in the appearance of anhedonia and defense behaviors relevant to depression in rats submitted to bilateral DLS lesions with 6-hydroxydopamine (6-OHDA; 10 µg/hemisphere). 6-OHDA induced partial dopaminergic nigrostriatal damage with no gross motor impairments. Anhedonic-like behaviors were observed in the splash and sucrose consumption tests only 7 days after 6-OHDA lesion. By contrast, defense behaviors relevant to depression evaluated in the forced swimming test and social withdrawal only emerged 21 days after 6-OHDA lesion when anhedonia was no longer present. These temporally dissociated behavioral alterations were coupled to temporal- and structure-dependent alterations in dopaminergic markers such as dopamine D1 and D2 receptors and dopamine transporter, leading to altered dopamine sensitivity in DLS and PFC circuits, evaluated electrophysiologically. These results provide the first demonstration of a dissociated involvement of the DLS and PFC in anhedonic-like and defense behaviors relevant to depression in 6-OHDA-lesioned rats, which was linked with temporal fluctuations in dopaminergic receptor density, leading to altered dopaminergic system sensitivity in these two brain structures. This sheds new light to the duality between depressive and anhedonic symptoms in PD.


Assuntos
Anedonia , Comportamento Animal , Corpo Estriado/patologia , Depressão/induzido quimicamente , Depressão/patologia , Córtex Pré-Frontal/patologia , Animais , Corpo Estriado/metabolismo , Corpo Estriado/fisiopatologia , Depressão/fisiopatologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Masculino , Atividade Motora , Oxidopamina , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiopatologia , Ratos Wistar , Receptores Dopaminérgicos/metabolismo , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo
19.
Neurotox Res ; 29(1): 118-25, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26464310

RESUMO

The classical motor symptoms of Parkinson's disease (PD) are preceded by non-motor symptoms in preclinical stages, including cognition impairment. The current drug treatment for PD is palliative and does not meet the clinical challenges of the disease, such as levodopa-induced dyskinesia, non-motor symptoms, and neuroprotection. We investigated the neuroprotective and disease-modifying potential of physical exercise in a preclinical animal model of PD. C57BL/6 mice (adult males) ran on a horizontal treadmill for 6 weeks (moderate intensity, 5 times/week) and were treated intranasally with 65 mg/kg of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Exercise did not protect against MPTP-induced nigrostriatal neurodegeneration or frontostriatal dopamine depletion but decreased striatal dopamine turnover. Exercise also attenuated procedural and working memory impairment and D2 receptor hypersensitivity in MPTP-treated mice. In summary, exercise improved dopaminergic neurotransmission and enhanced cognition in a preclinical animal model of PD.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/reabilitação , Dopamina/metabolismo , Neurotoxinas/farmacologia , Ácido 3,4-Di-Hidroxifenilacético , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Catalepsia/induzido quimicamente , Condicionamento Psicológico/efeitos dos fármacos , Teste de Esforço , Comportamento Exploratório/efeitos dos fármacos , Medo/efeitos dos fármacos , Ácido Homovanílico , Locomoção/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Tirosina 3-Mono-Oxigenase/metabolismo
20.
Purinergic Signal ; 11(4): 561-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26446689

RESUMO

ATP consumption during intense neuronal activity leads to peaks of both extracellular adenosine levels and increased glucose uptake in the brain. Here, we investigated the hypothesis that the activation of the low-affinity adenosine receptor, the A2B receptor (A(2B)R), promotes glucose uptake in neurons and astrocytes, thereby linking brain activity with energy metabolism. To this end, we mapped the spatiotemporal accumulation of the fluorescent-labelled deoxyglucose, 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG), in superfused acute hippocampal slices of C57Bl/6j mice. Bath application of the A(2B)R agonist BAY606583 (300 nM) triggered an immediate and stable (>10 min) increase of the velocity of 2-NBDG accumulation throughout hippocampal slices. This was abolished with the pretreatment with the selective A(2B)R antagonist, MRS1754 (200 nM), and was also absent in A(2B)R null-mutant mice. In mouse primary astrocytic or neuronal cultures, BAY606583 similarly increased (3)H-deoxyglucose uptake in the following 20 min incubation period, which was again abolished by a pretreatment with MRS1754. Finally, incubation of hippocampal, frontocortical, or striatal slices of C57Bl/6j mice at 37 °C, with either MRS1754 (200 nM) or adenosine deaminase (3 U/mL) significantly reduced glucose uptake. Furthermore, A(2B)R blockade diminished newly synthesized glycogen content and at least in the striatum, increased lactate release. In conclusion, we report here that A(2B)R activation is associated with an instant and tonic increase of glucose transport into neurons and astrocytes in the mouse brain. These prompt further investigations to evaluate the clinical potential of this novel glucoregulator mechanism.


Assuntos
4-Cloro-7-nitrobenzofurazano/análogos & derivados , Agonistas do Receptor A2 de Adenosina/farmacologia , Desoxiglucose/análogos & derivados , Glucose/metabolismo , Prosencéfalo/metabolismo , Receptor A2B de Adenosina/efeitos dos fármacos , Receptor A2B de Adenosina/metabolismo , 4-Cloro-7-nitrobenzofurazano/farmacologia , Animais , Astrócitos/metabolismo , Células Cultivadas , Desoxiglucose/metabolismo , Desoxiglucose/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Técnicas In Vitro , Ácido Láctico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Prosencéfalo/efeitos dos fármacos , Receptor A2B de Adenosina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...