Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(24): 13521-13528, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-33645878

RESUMO

Nucleophilic addition of carbon-centered nucleophiles to nanographene ketones represents a valuable late-stage method for the functionalization of zigzag nanographenes, but its use is rare in the chemical literature. Using two model systems, non-Kekulé triangulene-4,8-dione and Kekulé anthanthrone, we identify unexpected regioselectivities and uncover the rules that govern these reactions. Considering the large number of nanographene ketones that have been reported since the pioneering work of Eric Clar, this method enables synthesis and exploration of hitherto unknown functionalized nanographenes.

2.
Org Lett ; 21(17): 7124-7128, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31414815

RESUMO

We present to date the most efficient gram-scale synthesis of triangulene-4,8-dione and 12-hydroxytriangulene-4,8-dione, the precursors of Clar's hydrocarbon, in overall yields >50%. The direct dihydroprecursors of triangulene, obtained upon reduction of triangulene-4,8-dione, were stabilized in a supramolecular complex with a tetracationic cyclophane ExBox4+ and characterized by single-crystal X-ray crystallography. This result represents the first step in an endeavor to stabilize the fragile core of triangulene in an inclusion complex in solution and solid state.

3.
J Org Chem ; 81(24): 12303-12317, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27809529

RESUMO

Neutral open-shell molecules, in which spin density is delocalized through a helical conjugated backbone, hold promise as models for investigating phenomena arising from the interplay of magnetism and chirality. Apart from a handful of examples, however, the chemistry of these compounds remains largely unexplored. Here, we examine the prospect of extending spin-delocalization over a helical backbone in a model compound naphtho[3,2,1-no]tetraphene, the first helically chiral open-shell hydrocarbon, in which one benzene ring is fused to [5]helicene, forming a phenalenyl subunit. The unpaired electron in this molecule is delocalized over the entire helical core composed of six rings, albeit in a nonuniform fashion, unlike in phenalenyl. In the case of a monosubstituted derivative, the uneven spin-distribution results in a selective σ-dimer formation in solution, as confirmed by 2D NMR spectroscopy. In contrast, the dimerization process is suppressed entirely when four substituents are installed to sterically hinder all reactive positions. The persistent nature of the tetrasubstituted derivative allowed its characterization by EPR, UV-vis, and CD spectroscopies, validating spin-delocalization through a chiral backbone, in accord with DFT calculations. The nonuniform spin-distribution, which dictates the selectivity of the σ-dimer formation, is rationalized by evaluating the aromaticity of the resonance structures that contribute to spin-delocalization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...