Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202405824, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687322

RESUMO

In this minireview we survey the challenges and strategies in gold redox catalysis. Gold's reluctance to oxidative addition reactions due to its high redox potential limits its applicability. Initial attempts to overcome this problem focused on the use of sacrificial external oxidants in stoichiometric amounts to bring Au(I) compounds to Au(III) reactive species. Recently, innovative approaches focused on employing hemilabile ligands, which are capable of coordinating to Au(I) and stabilizing square-planar Au(III) intermediates, thus facilitating oxidative addition steps and enabling oxidant-free catalysis. Notable examples include the use of the (P^N) bidendate MeDalphos ligand to achieve various cross-coupling reactions via oxidative addition Au(I)/Au(III). Importantly, hemilabile ligand-enabled catalysis allows merging oxidative addition with π-activation, such as oxy- and aminoarylation of alkenols and alkenamines using organohalides, expanding gold's versatility in C-C and C-heteroatom bond formations and unprecedented cyclizations. Moreover, recent advancements in enantioselective catalysis using chiral hemilabile (P^N) ligands are also surveyed. Strikingly, versatile bidentate (C^N) hemilabile ligands as competitors of MeDalphos have appeared recently, by designing scaffolds where phosphine groups are substituted by N-heterocyclic or mesoionic carbenes. Overall, these approaches highlight the evolving landscape of gold redox catalysis and its tremendous potential in a broad scope of transformations.

2.
J Am Chem Soc ; 146(8): 5186-5194, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38311922

RESUMO

Isomer-pure functionalized fullerenes are required to boost the development of fullerene chemistry in any field, but their multiple functionalization renders a mixture of regioisomers that are very difficult to purify by chromatography. For the specific case of C70, its nonspherical geometry makes its regioselective functionalization more challenging than that of spherical C60. In this work, the supramolecular mask approach is applied for the first time to C70, which is encapsulated in two different nanocapsules to achieve the Bingel bis-cyclopropanation at α-bonds of opposite poles. Based on the tetragonal prismatic geometry imposed by the smaller supramolecular mask tested, the obtained major bis-adduct is completely reversed (major 5 o'clock) compared to bare C70 functionalization (major 2 o'clock). Moreover, by further restricting the accessibility of C70 using a three-shell Matryoshka mask and dibenzyl-bromomalonate, a single regiospecific 2 o'clock bis-isomer is obtained, owing to the perfect complementarity of the mask and the addend steric properties. The outcome of the reactions is fully explained at the molecular level by means of a thorough molecular dynamics (MD) study of the accessibility of the α-bonds to produce the different bis-adducts.

3.
Chemistry ; 30(5): e202303200, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37903141

RESUMO

Here we report the stepwise synthesis of new nanographenes (NGs) and polycyclic aromatic hydrocarbons (PAHs) obtained via Scholl ring fusion applied at aromatic homologation compounds, which are obtained through one-step Ni-catalysed Csp2 -F functionalization. The latter are rapidly accessed valid precursors for the Scholl reaction, and screening of experimental conditions allowed us to describe for the first time furanol-bearing PAHs. Mechanistic insights are obtained by DFT to rationalize the formation of the furanol PAHs under moderately acidic conditions. All PAHs and NGs synthesized show moderate/weak fluorescent properties, and all PAHs crystallized show some degree of curvature and are obtained as racemic mixtures. Enantiomeric separation by chiral HPLC of one furanol-bearing PAH allowed the study of their chiroptical CD properties.

4.
Angew Chem Int Ed Engl ; 62(42): e202309393, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37607866

RESUMO

The addition of two unsymmetric malonate esters to the Buckminster fullerene C60 can lead to 22 spectroscopically distinguishable isomeric products and therefore represents a formidable synthesis challenge. In this work, we achieve 87 % selectivity for the formation of a single (in,out-trans-3) isomer by combining three approaches: (i) we use a starting material, in which the two malonates are covalently connected (tether approach); (ii) we form the strong supramolecular complex of C60 with the shape-persistent [10]CPP macrocycle (template approach) and (iii) we embed this complex further within a self-assembled nanocapsule (shadow mask approach). Variation of the spacer chain shed light on the limitations of the approach and the ring dynamics in the unusual [2]catenanes were studied in silico with atomistic resolution. This work significantly widens the scope of mechanically interlocked architectures comprising cycloparaphenylenes (CPP).

5.
Molecules ; 28(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36903548

RESUMO

The Lewis-acidic character and robustness of NHC-Au(I) complexes enable them to catalyze a large number of reactions, and they are enthroned as the catalysts of choice for many transformations among polyunsaturated substrates. More recently, Au(I)/Au(III) catalysis has been explored either by utilizing external oxidants or by seeking oxidative addition processes with catalysts featuring pendant coordinating groups. Herein, we describe the synthesis and characterization of N-heterocyclic carbene (NHC)-based Au(I) complexes, with and without pendant coordinating groups, and their reactivity in the presence of different oxidants. We demonstrate that when using iodosylbenzene-type oxidants, the NHC ligand undergoes oxidation to afford the corresponding NHC=O azolone products concomitantly with quantitative gold recovery in the form of Au(0) nuggets ~0.5 mm in size. The latter were characterized by SEM and EDX-SEM showing purities above 90%. This study shows that NHC-Au complexes can follow decomposition pathways under certain experimental conditions, thus challenging the believed robustness of the NHC-Au bond and providing a novel methodology to produce Au(0) nuggets.

6.
J Am Chem Soc ; 144(42): 19542-19558, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36228322

RESUMO

Reactions that enable selective functionalization of strong aliphatic C-H bonds open new synthetic paths to rapidly increase molecular complexity and expand chemical space. Particularly valuable are reactions where site-selectivity can be directed toward a specific C-H bond by catalyst control. Herein we describe the catalytic site- and stereoselective γ-lactonization of unactivated primary C-H bonds in carboxylic acid substrates. The system relies on a chiral Mn catalyst that activates aqueous hydrogen peroxide to promote intramolecular lactonization under mild conditions, via carboxylate binding to the metal center. The system exhibits high site-selectivity and enables the oxidation of unactivated primary γ-C-H bonds even in the presence of intrinsically weaker and a priori more reactive secondary and tertiary ones at α- and ß-carbons. With substrates bearing nonequivalent γ-C-H bonds, the factors governing site-selectivity have been uncovered. Most remarkably, by manipulating the absolute chirality of the catalyst, γ-lactonization at methyl groups in gem-dimethyl structural units of rigid cyclic and bicyclic carboxylic acids can be achieved with unprecedented levels of diastereoselectivity. Such control has been successfully exploited in the late-stage lactonization of natural products such as camphoric, camphanic, ketopinic, and isoketopinic acids. DFT analysis points toward a rebound type mechanism initiated by intramolecular 1,7-HAT from a primary γ-C-H bond of the bound substrate to a highly reactive MnIV-oxyl intermediate, to deliver a carbon radical that rapidly lactonizes through carboxylate transfer. Intramolecular kinetic deuterium isotope effect and 18O labeling experiments provide strong support to this mechanistic picture.


Assuntos
Produtos Biológicos , Ácidos Carboxílicos , Produtos Biológicos/química , Peróxido de Hidrogênio , Deutério , Catálise , Carbono/química
7.
Chem Sci ; 13(32): 9351-9360, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36093006

RESUMO

Oxidant-free Au-catalyzed reactions are emerging as a new synthetic tool for innovative organic transformations. Oxidant-free Au-catalyzed reactions are emerging as a new synthetic tool for innovative organic transformations. Still, a deeper mechanistic understanding is needed for a rational design of these processes. Here we describe the synthesis of two Au(i) complexes bearing bidentated hemilabile MIC^N ligands, [AuI(MIC^N)Cl], and their ability to stabilize square-planar Au(iii) species (MIC = mesoionic carbene). The presence of the hemilabile N-ligand contributed to stabilize the ensuing Au(iii) species acting as a five-membered ring chelate upon its coordination to the metal center. The Au(iii) complexes can be obtained either by using external oxidants or, alternatively, by means of feasible oxidative addition with strained biphenylene Csp2 -Csp2 bonds as well as with aryl iodides. Based on the fundamental knowledge gained on the redox properties on these Au(i)/Au(iii) systems, we successfully develop a novel Au(i)-catalytic procedure for the synthesis of γ-substituted γ-butyrolactones through the arylation-lactonization reaction of the corresponding γ-alkenoic acid. The oxidative addition of the aryl iodide, which in turn is allowed by the hemilabile nature of the MIC^N ligand, is an essential step for this transformation.

8.
Inorg Chem ; 61(35): 14075-14085, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35997604

RESUMO

Cobalt-catalyzed C-H amination via M-nitrenoid species is spiking the interest of the research community. Understanding this process at a molecular level is a challenging task, and here we report a well-defined macrocyclic system featuring a pseudo-Oh aryl-CoIII species that reacts with aliphatic azides to effect intramolecular Csp2-N bond formation. Strikingly, a putative aryl-Co═NR nitrenoid intermediate species is formed and is rapidly trapped by a carboxylate ligand to form a carboxylate masked-nitrene, which functions as a shortcut to stabilize and guide the reaction to productive intramolecular Csp2-N bond formation. On one hand, several intermediate species featuring the Csp2-N bond formed have been isolated and structurally characterized, and the essential role of the carboxylate ligand has been proven. Complementarily, a thorough density functional theory study of the Csp2-N bond formation mechanism explains at the molecular level the key role of the carboxylate-masked nitrene species, which is essential to tame the metastability of the putative aryl-CoIII═NR nitrene species to effectively yield the Csp2-N products. The solid molecular mechanistic scheme determined for the Csp2-N bond forming reaction is fully supported by both experimental and computation complementary studies.


Assuntos
Ácidos Carboxílicos , Aminação , Ácidos Carboxílicos/química , Catálise , Iminas , Ligantes , Estrutura Molecular
9.
Nanoscale Horiz ; 7(6): 607-615, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35389405

RESUMO

The synthesis of metallic nanoparticles (MNP) with high surface area and controlled shape is of paramount importance to increase their catalytic performance. The detailed growing process of NP is mostly unknown and understanding the specific steps would pave the way for a rational synthesis of the desired MNP. Here we take advantage of the stabilization properties exerted by the tetragonal prismatic supramolecular nanocapsule 8·(BArF)8 to develop a synthetic methodology for sub-nanometric RuNP (0.6-0.7 nm). The catalytic properties of these sub-nanometric nanoparticles were tested on the hydrogenation of styrene, obtaining excellent selectivity for the hydrogenation of the alkene moiety. In addition, the encapsulation of [Ru5] clusters inside the nanocapsule is strikingly observed in most of the experimental conditions, as ascertained by HR-MS. Moreover, a thorough DFT study enlightens the nature of the [Ru5] clusters as tb-Ru5H2(η6-PhH)2(η6-pyz)3 (2) trapped by two arene moieties of the clip, or as tb-Ru5H2(η1-pyz)6(η6-pyz)3 (3) trapped between the two Zn-porphyrin units of the nanocapsule. Both options fulfill the Wade-Mingos counting rules, i.e. 72 CVEs for the closotb. The trapped [Ru5] metallic clusters are proposed to be the first-grown seeds of subsequent formation of the subnanometric RuNP. Moreover, the double role of the nanocapsule in stabilising ∼0.7 nm NPs and also in hosting ultra-small Ru clusters, is unprecedented and may pave the way towards the synthesis of ultra-small metallic clusters for catalytic purposes.

10.
Chemistry ; 28(29): e202200625, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35322915

RESUMO

A Ni-catalyzed Csp2 -OMe ortho-functionalization methodology to form chemoselectively alkyne monoannulation or aromatic homologation products is reported as a novel protocol towards the valorisation of substrates containing Csp2 -OMe units. Double activation of Csp2 -OMe and Csp2 -F bonds is also demonstrated. Further use of aromatic homologation products towards the synthesis of nanographene-like compounds is described.

11.
Nat Chem ; 13(5): 420-427, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33859394

RESUMO

Molecular Russian dolls (matryoshkas) have proven useful for testing the limits of preparative supramolecular chemistry but applications of these architectures to problems in other fields are elusive. Here we report a three-shell, matryoshka-like complex-in which C60 sits inside a cycloparaphenylene nanohoop, which in turn is encapsulated inside a self-assembled nanocapsule-that can be used to address a long-standing challenge in fullerene chemistry, namely the selective formation of a particular fullerene bis-adduct. Spectroscopic evidence indicates that the ternary complex is sufficiently stable in solution for the two outer shells to affect the addition chemistry of the fullerene guest. When the complex is subjected to Bingel cyclopropanation conditions, the exclusive formation of a single trans-3 fullerene bis-adduct was observed in a reaction that typically yields more than a dozen products. The selectivity facilitated by this matryoshka-like approach appears to be a general phenomenon and could be useful for applications where regioisomerically pure C60 bis-adducts have been shown to have superior properties compared with isomer mixtures.

12.
Organometallics ; 40(9): 1195-1200, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36158566

RESUMO

Herein we explore the intrinsic organometallic reactivity of iron embedded in a tetradentate N3C macrocyclic ligand scaffold that allows the stabilization of aryl-Fe species, which are key intermediates in Fe-catalyzed cross-coupling and C-H functionalization processes. This study covers C-H activation reactions using Me L H and FeCl2, biaryl C-C coupling product formation through reaction with Grignard reagents, and cross-coupling reactions using Me L Br or H L Br in combination with Fe0(CO)5. Synthesis under light irradiation and moderate heating (50 °C) affords the aryl-FeII complexes [FeII(Br)( Me L)(CO)] (1 Me ) and [FeII( H L)(CO)2]Br (1 H ). Exhaustive spectroscopic characterization of these rare low-spin diamagnetic species, including their crystal structures, allowed the investigation of their intrinsic reactivity.

13.
Molecules ; 25(20)2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050208

RESUMO

Ullmann-type copper-mediated arylC-O bond formation has attracted the attention of the catalysis and organometallic communities, although the mechanism of these copper-catalyzed coupling reactions remains a subject of debate. We have designed well-defined triazamacrocyclic-based aryl-CuIII complexes as an ideal platform to study the C-heteroatom reductive elimination step with all kinds of nucleophiles, and in this work we focus our efforts on the straightforward synthesis of phenols by using H2O as nucleophile. Seven well-defined aryl-CuIII complexes featuring different ring size and different electronic properties have been reacted with water in basic conditions to produce final bis-phenoxo-CuII2 complexes, all of which are characterized by XRD. Mechanistic investigations indicate that the reaction takes place by an initial deprotonation of the NH group coordinated to CuIII center, subsequent reductive elimination with H2O as nucleophile to form phenoxo products, and finally air oxidation of the CuI produced to form the final bis-phenoxo-CuII2 complexes, whose enhanced stability acts as a thermodynamic sink and pushes the reaction forward. Furthermore, the corresponding triazamacrocyclic-CuI complexes react with O2 to undergo 1e- oxidation to CuII and subsequent C-H activation to form aryl-CuIII species, which follow the same fate towards bis-phenoxo-CuII2 complexes. This work further highlights the ability of the triazamacrocyclic-CuIII platform to undergo aryl-OH formation by reductive elimination with basic water, and also shows the facile formation of rare bis-phenoxo-CuII2 complexes.


Assuntos
Cobre/química , Compostos Organometálicos/química , Fenóis/química , Catálise , Cristalografia por Raios X , Hidroxilação , Modelos Moleculares , Estrutura Molecular , Oxirredução , Termodinâmica
14.
J Am Chem Soc ; 142(37): 16051-16063, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32822170

RESUMO

The dynamic adaptability of tetragonal prismatic nanocapsule 18+ in the selective separation of fullerenes and endohedral metallofullerenes (EMFs) remains unexplored. Therefore, the essential molecular details of the fullerene recognition and binding process into the coordination capsule and the origins of fullerene selectivity remain elusive. In this work, the key steps of fullerene recognition and binding processes have been deciphered by designing a protocol which combines 1H-1H exchange spectroscopy (2D-EXSY) NMR experiments, long time-scale Molecular Dynamics (MD) and accelerated Molecular Dynamics (aMD) simulations, which are combined to completely reconstruct the spontaneous binding and unbinding pathways from nanosecond to second time-range. On one hand, binding (k'on) and unbinding (koff) rate constants were extracted from 1H-1H exchange spectroscopy (EXSY) NMR experiments for both C60 and C70. On the other hand, MD and aMD allowed monitoring the molecular basis of the encapsulation and guest competition processes at a very early stage under nonequilibrium conditions. The receptor capsule displays dynamical adaptability features similar to those observed in the process of biomolecular recognition in proteins. In addition, the encapsulation of bis-aza[60]fullerene (C59N)2 within a supramolecular coordination capsule has been studied for the first time, showcasing the pros and cons of the dumbbell-shaped guest in the dynamics of the encapsulation process and in the stability of the final bound adduct. The powerful combination of NMR, MD, and aMD methodologies allows to obtain a precise picture of the subtle events directing the encapsulation and is thus a predictive tool for understanding host-guest encapsulation and interactions in numerous supramolecular systems.

15.
Org Lett ; 22(17): 7034-7040, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32816494

RESUMO

A secondary phosphine oxide (SPO)-nickel catalyst allowed the activation of otherwise inert C-F bonds of unactivated arenes in terms of challenging couplings with primary and secondary alkyl Grignard reagents. The C-F activation is characterized by mild reaction conditions and high levels of branched selectivity. Electron-rich and electron-deficient arenes were suitable electrophiles for this transformation. In addition, this strategy also proved suitable to heterocycles and for the activation of C-O bonds under slightly modified conditions.

16.
Chem Sci ; 11(2): 534-542, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-32190273

RESUMO

Previously, an unexpected Co-catalysed remote C-H nitration of 8-aminoquinolinamide compounds was developed. This report provided a novel reactivity for Co which was assumed to proceed through the mechanistic pathway already known for analogous Cu-catalysed remote couplings of the same substrates. In order to shed light into this intriguing, and previously unobserved reactivity for Co, a thorough computational study has now been performed, which has allowed for a full understanding of the operative mechanism. This study demonstrates that the Co-catalysed remote coupling does not occur through the previously proposed Single Electron Transfer (SET) mechanism, but actually operates through a high-spin induced remote radical coupling mechanism, through a key intermediate with significant proportion of spin density at the 5- and 7-positions of the aminoquinoline ring. Additionally, new experimental data provides expansion of the synthetic utility of the original nitration procedure towards 1-naphthylpicolinamide which unexpectedly appears to operate via a subtly different mechanism despite having a similar chelate environment.

17.
J Am Chem Soc ; 142(3): 1584-1593, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31881152

RESUMO

The formidable challenges of controlling site-selectivity, enantioselectivity, and product chemoselectivity make asymmetric C-H oxidation a generally unsolved problem for nonenzymatic systems. Discrimination between the two enantiotopic C-H bonds of an unactivated methylenic group is particularly demanding and so far unprecedented, given the similarity between their environments and the facile overoxidation of the initially formed hydroxylation product. Here we show that a Mn-catalyzed C-H oxidation directed by carboxylic acids can overcome these challenges to yield γ-lactones in high enantiomeric excess (up to 99%) using hydrogen peroxide as oxidant and a Brønsted acid additive under mild conditions and short reaction times. Coordination of the carboxylic acid group to the bulky Mn complex ensures the rigidity needed for high enantioselectivity and dictates the outstanding γ site-selectivity. When the substrate contains nonequivalent γ-methylenes, the site-selectivity for lactonization can be rationally predicted on the basis of simple C-H activation/deactivation effects exerted by proximal substituents. In addition, discrimination of diastereotopic C-H bonds can be modulated by catalyst design, with no erosion of enantiomeric excess. The potential of this reaction is illustrated in the concise synthesis of a tetrahydroxylated bicyclo[3.3.1]nonane enabled by two key, sequential γ-C-H lactonizations, with the latter that fixes the chirality of five stereogenic centers in one step with 96% ee.

18.
Nanoscale ; 11(47): 23035-23041, 2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31774082

RESUMO

The ability of the tetragonal prismatic nanocapsule 1·(BArF)8 to selectively encapsulate U-based C78 EMFs from a soot mixture is reported, showing enhanced affinity for C78-based EMFs over C80-based EMFs. Molecular recognition driven by the electrostatic interactions between the host and guest is at the basis of the high selectivity observed for ellipsoidal C78-based EMFs compared to spherical C80-based EMFs. In addition, DFT analysis points towards an enhanced breathing adaptability of nanocapsule 1·(BArF)8 to C78-based EMFs to further explain the selectivity observed when the host is used in the solid phase.

19.
J Am Chem Soc ; 141(46): 18500-18507, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31710474

RESUMO

Small π-conjugated nanohoops are difficult to prepare, but offer an excellent platform for studying the interplay between strain and optoelectronic properties, and, increasingly, these shape-persistent macrocycles find uses in host-guest chemistry and self-assembly. We report the synthesis of a new family of radially π-conjugated porphyrinylene/phenylene nanohoops. The strain energy in the smallest nanohoop [2]CPT is approximately 54 kcal mol-1, which results in a narrowed HOMO-LUMO gap and a red shift in the visible part of the absorption spectrum. Because of its high degree of preorganization and a diameter of ca. 13 Å, [2]CPT was found to accommodate C60 with a binding affinity exceeding 108 M-1 despite the fullerene not fully entering the cavity of the host (X-ray crystallography). Moreover, the π-extended nanohoops [2]CPTN, [3]CPTN, and [3]CPTA (N for 1,4-naphthyl; A for 9,10-anthracenyl) have been prepared using the same strategy, and [2]CPTN has been shown to bind C70 5 times more strongly than [2]CPT. Our failed synthesis of [2]CPTA highlights a limitation of the experimental approach most commonly used to prepare strained nanohoops, because in this particular case the sum of aromatization energies no longer outweighs the buildup of ring strain in the final reaction step (DFT calculations). These results indicate that forcing ring strain onto organic semiconductors is a viable strategy to fundamentally influence both optoelectronic and supramolecular properties.

20.
Chem Commun (Camb) ; 55(6): 798-801, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30570641

RESUMO

A novel naphthalene-based 5·(BArF)8 capsule allows for the size-selective inclusion of C60 from fullerene mixtures. Its size selectivity towards C60 has been rationalized by its dynamic adaptability in solution that has been investigated by molecular dynamics. Additionally, 5·(BArF)8 encapsulates C60-derivatives such as C60-PCBM and N-methylpyrrolidine-C60. The latter can be separated from C60 since 5·(BArF)8 displays distinct affinity for them.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...