Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Biochemistry ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997112

RESUMO

Closely spaced promoters are ubiquitous in prokaryotic and eukaryotic genomes. How their structure and dynamics relate remains unclear, particularly for tandem formations. To study their transcriptional interference, we engineered two pairs and one trio of synthetic promoters in nonoverlapping, tandem formation, in single-copy plasmids transformed into Escherichia coli cells. From in vivo measurements, we found that these promoters in tandem formation can have attenuated transcription rates. The attenuation strength can be widely fine-tuned by the promoters' positioning, natural regulatory mechanisms, and other factors, including the antibiotic rifampicin, which is known to hamper RNAP promoter escape. From this, and supported by in silico models, we concluded that the attenuation in these constructs emerges from premature terminations generated by collisions between RNAPs elongating from upstream promoters and RNAPs occupying downstream promoters. Moreover, we found that these collisions can cause one or both RNAPs to falloff. Finally, the broad spectrum of possible, externally regulated, attenuation strengths observed in our synthetic tandem promoters suggests that they could become useful as externally controllable regulators of future synthetic circuits.

2.
mSystems ; 9(6): e0006524, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38687030

RESUMO

The topology of the transcription factor network (TFN) of Escherichia coli is far from uniform, with 22 global regulator (GR) proteins controlling one-third of all genes. So far, their production rates cannot be tracked by comparable fluorescent proteins. We developed a library of fluorescent reporters for 16 GRs for this purpose. Each consists of a single-copy plasmid coding for green fluorescent protein (GFP) fused to the full-length copy of the native promoter. We tracked their activity in exponential and stationary growth, as well as under weak and strong stresses. We show that the reporters have high sensitivity and specificity to all stresses tested and detect single-cell variability in transcription rates. Given the influence of GRs on the TFN, we expect that the new library will contribute to dissecting global transcriptional stress-response programs of E. coli. Moreover, the library can be invaluable in bioindustrial applications that tune those programs to, instead of cell growth, favor productivity while reducing energy consumption.IMPORTANCECells contain thousands of genes. Many genes are involved in the control of cellular activities. Some activities require a few hundred genes to run largely synchronous transcriptional programs. To achieve this, cells have evolved global regulator (GR) proteins that can influence hundreds of genes simultaneously. We have engineered a library of Escherichia coli strains to track the levels over time of these, phenotypically critical, GRs. Each strain has a single-copy plasmid coding for a fast-maturing green fluorescent protein whose transcription is controlled by a copy of the natural GR promoter. By allowing the tracking of GR levels, with sensitivity and specificity, this library should become of wide use in scientific research on bacterial gene expression (from molecular to synthetic biology) and, later, be used in applications in therapeutics and bioindustries.


Assuntos
Escherichia coli , Regulação Bacteriana da Expressão Gênica , Biblioteca Gênica , Genes Reporter , Proteínas de Fluorescência Verde , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Plasmídeos/genética , Regiões Promotoras Genéticas/genética
3.
ESC Heart Fail ; 10(1): 442-452, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36274250

RESUMO

AIMS: Left ventricular ejection fraction (LVEF) ≤ 40% is a well-established risk factor for mortality after acute coronary syndromes (ACS). However, the long-term prognostic impact of mildly reduced ejection fraction (EF) (LVEF 41-49%) after ACS remains less clear. METHODS AND RESULTS: This was a retrospective study enrolling patients admitted with ACS included in a single-centre databank. LVEF was assessed by echocardiography during index hospitalization. Patients were divided in the following categories according to LVEF: normal (LVEF ≥ 50%), mildly reduced (LVEF 41-49%), and reduced (LVEF ≤ 40%). The endpoint of interest was all-cause death after hospital discharge. A multivariable Cox model was used to adjust for confounders. A total of 3200 patients were included (1952 with normal EF, 375 with mildly reduced EF, and 873 with reduced EF). The estimated cumulative incidence rates of mortality at 10 years for patients with normal, mildly reduced, and reduced EF were 24.8%, 33.5%, and 41.3%, respectively. After adjustments, the presence of reduced EF was associated with higher mortality compared with normal EF [adjusted hazard ratio (HR) 1.64; 95% confidence interval (CI) 1.36-1.96; P < 0.001], as was mildly reduced EF compared with normal EF (adjusted HR 1.33; 95% CI 1.05-1.68; P = 0.019). The presence of reduced EF was not associated with a statistically significantly higher mortality compared with mildly reduced EF (adjusted HR 1.23; 95% CI 0.96-1.57; P = 0.095). CONCLUSIONS: In patients with ACS, mildly reduced EF measured in the acute phase was associated with higher long-term mortality compared with patients with normal EF. These data emphasize the importance of anti-remodelling therapies for ACS patients who have LVEF in the mildly reduced range.


Assuntos
Síndrome Coronariana Aguda , Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Humanos , Volume Sistólico , Função Ventricular Esquerda , Estudos Retrospectivos , Disfunção Ventricular Esquerda/complicações
4.
Nucleic Acids Res ; 50(15): 8512-8528, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35920318

RESUMO

Cold shock adaptability is a key survival skill of gut bacteria of warm-blooded animals. Escherichia coli cold shock responses are controlled by a complex multi-gene, timely-ordered transcriptional program. We investigated its underlying mechanisms. Having identified short-term, cold shock repressed genes, we show that their responsiveness is unrelated to their transcription factors or global regulators, while their single-cell protein numbers' variability increases after cold shock. We hypothesized that some cold shock repressed genes could be triggered by high propensity for transcription locking due to changes in DNA supercoiling (likely due to DNA relaxation caused by an overall reduction in negative supercoiling). Concomitantly, we found that nearly half of cold shock repressed genes are also highly responsive to gyrase inhibition (albeit most genes responsive to gyrase inhibition are not cold shock responsive). Further, their response strengths to cold shock and gyrase inhibition correlate. Meanwhile, under cold shock, nucleoid density increases, and gyrases and nucleoid become more colocalized. Moreover, the cellular energy decreases, which may hinder positive supercoils resolution. Overall, we conclude that sensitivity to diminished negative supercoiling is a core feature of E. coli's short-term, cold shock transcriptional program, and could be used to regulate the temperature sensitivity of synthetic circuits.


Assuntos
DNA Super-Helicoidal , Escherichia coli , Resposta ao Choque Frio/genética , DNA/metabolismo , DNA Girase/genética , DNA Girase/metabolismo , DNA Super-Helicoidal/genética , DNA Super-Helicoidal/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
5.
Biochim Biophys Acta Gene Regul Mech ; 1865(3): 194812, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35338024

RESUMO

Escherichia coli uses σ factors to quickly control large gene cohorts during stress conditions. While most of its genes respond to a single σ factor, approximately 5% of them have dual σ factor preference. The most common are those responsive to both σ70, which controls housekeeping genes, and σ38, which activates genes during stationary growth and stresses. Using RNA-seq and flow-cytometry measurements, we show that 'σ70+38 genes' are nearly as upregulated in stationary growth as 'σ38 genes'. Moreover, we find a clear quantitative relationship between their promoter sequence and their response strength to changes in σ38 levels. We then propose and validate a sequence dependent model of σ70+38 genes, with dual sensitivity to σ38 and σ70, that is applicable in the exponential and stationary growth phases, as well in the transient period in between. We further propose a general model, applicable to other stresses and σ factor combinations. Given this, promoters controlling σ70+38 genes (and variants) could become important building blocks of synthetic circuits with predictable, sequence-dependent sensitivity to transitions between the exponential and stationary growth phases.


Assuntos
Proteínas de Escherichia coli , Fator sigma , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Fator sigma/genética , Fator sigma/metabolismo
6.
PLoS Comput Biol ; 18(1): e1009824, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35100257

RESUMO

Closely spaced promoters in tandem formation are abundant in bacteria. We investigated the evolutionary conservation, biological functions, and the RNA and single-cell protein expression of genes regulated by tandem promoters in E. coli. We also studied the sequence (distance between transcription start sites 'dTSS', pause sequences, and distances from oriC) and potential influence of the input transcription factors of these promoters. From this, we propose an analytical model of gene expression based on measured expression dynamics, where RNAP-promoter occupancy times and dTSS are the key regulators of transcription interference due to TSS occlusion by RNAP at one of the promoters (when dTSS ≤ 35 bp) and RNAP occupancy of the downstream promoter (when dTSS > 35 bp). Occlusion and downstream promoter occupancy are modeled as linear functions of occupancy time, while the influence of dTSS is implemented by a continuous step function, fit to in vivo data on mean single-cell protein numbers of 30 natural genes controlled by tandem promoters. The best-fitting step is at 35 bp, matching the length of DNA occupied by RNAP in the open complex formation. This model accurately predicts the squared coefficient of variation and skewness of the natural single-cell protein numbers as a function of dTSS. Additional predictions suggest that promoters in tandem formation can cover a wide range of transcription dynamics within realistic intervals of parameter values. By accurately capturing the dynamics of these promoters, this model can be helpful to predict the dynamics of new promoters and contribute to the expansion of the repertoire of expression dynamics available to synthetic genetic constructs.


Assuntos
Escherichia coli/genética , Regiões Promotoras Genéticas , DNA Bacteriano/genética , Expressão Gênica , Cinética , Transcrição Gênica
7.
Adv Exp Med Biol ; 1267: 59-80, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32894477

RESUMO

The internal spatial organization of prokaryotic organisms, including Escherichia coli, is essential for the proper functioning of processes such as cell division. One source of this organization in E. coli is the nucleoid, which causes the exclusion of macromolecules - e.g. protein aggregates and the chemotaxis network - from midcell. Similarly, following DNA replication, the nucleoid(s) assist in placing the Z-ring at midcell. These processes need to be efficient in optimal conditions and robust to suboptimal conditions. After reviewing recent findings on these topics, we make use of past data to study the efficiency of the spatial constraining of Z-rings, chemotaxis networks, and protein aggregates, as a function of the nucleoid(s) morphology. Also, we compare the robustness of these processes to nonoptimal temperatures. We show that Z-rings, Tsr clusters, and protein aggregates have temperature-dependent spatial distributions along the major cell axis that are consistent with the nucleoid(s) morphology and the volume-exclusion phenomenon. Surprisingly, the consequences of the changes in nucleoid size with temperature are most visible in the kurtosis of these spatial distributions, in that it has a statistically significant linear correlation with the mean nucleoid length and, in the case of Z-rings, with the distance between nucleoids prior to cell division. Interestingly, we also find a negative, statistically significant linear correlation between the efficiency of these processes at the optimal condition and their robustness to suboptimal conditions, suggesting a trade-off between these traits.


Assuntos
Escherichia coli/citologia , Escherichia coli/metabolismo , Organelas/metabolismo , Divisão Celular , Replicação do DNA
8.
Biosystems ; 193-194: 104154, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32353481

RESUMO

Regulation of future RNA and protein numbers is a key process by which cells continuously best fit the environment. In bacteria, RNA and proteins exist in small numbers and their regulatory processes are stochastic. Consequently, there is cell-to-cell variability in these numbers, even between sister cells. Traditionally, the two most studied sources of this variability are gene expression and RNA and protein degradation, with evidence suggesting that the latter is subject to little regulation, when compared to the former. However, time-lapse microscopy and single molecule fluorescent tagging have produced evidence that cell division can also be a significant source of variability due to asymmetries in the partitioning of RNA and proteins. Relevantly, the impact of this noise differs from noise in production and degradation since, unlike these, it is not continuous. Rather, it occurs at specific time points, at which moment it can introduce major fluctuations. Several models have now been proposed that integrate noise from cell division, in addition to noise in gene expression, to mimic the dynamics of RNA and protein numbers of cell lineages. This is expected to be particularly relevant in genetic circuits, where significant fluctuations in one component protein, at specific time moments, are expected to perturb near-equilibrium states of the circuits, which can have long-lasting consequences. Here we review stochastic models coupling these processes in Escherichia coli, from single genes to small circuits.


Assuntos
Divisão Celular/fisiologia , Escherichia coli/fisiologia , Regulação da Expressão Gênica/fisiologia , Modelos Biológicos , Animais , Humanos , Processos Estocásticos
9.
Biochim Biophys Acta Gene Regul Mech ; 1863(5): 194515, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32113983

RESUMO

Positive supercoiling buildup (PSB) is a pervasive phenomenon in the transcriptional programs of Escherichia coli. After finding a range of Gyrase concentrations where the inverse of the transcription rate of a chromosome-integrated gene changes linearly with the inverse of Gyrase concentration, we apply a LineWeaver-Burk plot to dissect the expected in vivo transcription rate in absence of PSB. We validate the estimation by time-lapse microscopy of single-RNA production kinetics of the same gene when single-copy plasmid-borne, shown to be impervious to Gyrase inhibition. Next, we estimate the fraction of time in locked states and number of transcription events prior to locking, which we validate by measurements under Gyrase inhibition. Replacing the gene of interest by one with slower transcription rate decreases the fraction of time in locked states due to PSB. Finally, we combine data from both constructs to infer a range of possible transcription initiation locking kinetics in a chromosomal location, obtainable by tuning the transcription rate. We validate with measurements of transcription activity at different induction levels. This strategy for dissecting transcription initiation locking kinetics due to PSB can contribute to resolve the transcriptional programs of E. coli and in the engineering of synthetic genetic circuits.


Assuntos
Simulação por Computador , DNA Girase/metabolismo , DNA Bacteriano/genética , DNA Super-Helicoidal/genética , Proteínas de Escherichia coli/metabolismo , Iniciação da Transcrição Genética , DNA Bacteriano/química , DNA Super-Helicoidal/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Cinética , Novobiocina/farmacologia , RNA/genética , RNA/metabolismo , Inibidores da Topoisomerase II/farmacologia
10.
J R Soc Interface ; 16(161): 20190507, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31822223

RESUMO

Many genes are spaced closely, allowing coordination without explicit control through shared regulatory elements and molecular interactions. We study the dynamics of a stochastic model of a gene-pair in a head-to-head configuration, sharing promoter elements, which accounts for the rate-limiting steps in transcription initiation. We find that only in specific regions of the parameter space of the rate-limiting steps is orderly coexpression exhibited, suggesting that successful cooperation between closely spaced genes requires the coevolution of compatible rate-limiting step configuration. The model predictions are validated using in vivo single-cell, single-RNA measurements of the dynamics of pairs of genes sharing promoter elements. Our results suggest that, in E. coli, the kinetics of the rate-limiting steps in active transcription can play a central role in shaping the dynamics of gene-pairs sharing promoter elements.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Modelos Genéticos , Regiões Promotoras Genéticas/fisiologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , RNA Bacteriano/metabolismo , Processos Estocásticos
11.
J Microbiol Methods ; 166: 105745, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31654657

RESUMO

Estimating the statistics of single-cell RNA numbers has become a key source of information on gene expression dynamics. One of the most informative methods of in vivo single-RNA detection is MS2d-GFP tagging. So far, it requires microscopy and laborious semi-manual image analysis, which hampers the amount of collectable data. To overcome this limitation, we present a new methodology for quantifying the mean, standard deviation, and skewness of single-cell distributions of RNA numbers, from flow cytometry data on cells expressing RNA tagged with MS2d-GFP. The quantification method, based on scaling flow-cytometry data from microscopy single-cell data on integer-valued RNA numbers, is shown to readily produce precise, big data on in vivo single-cell distributions of RNA numbers and, thus, can assist in studies of transcription dynamics.


Assuntos
Escherichia coli/genética , Citometria de Fluxo/métodos , RNA Bacteriano/análise , Análise de Célula Única/métodos , Corantes Fluorescentes/química , Expressão Gênica/genética , Microscopia/métodos
12.
Sci Rep ; 9(1): 4486, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872616

RESUMO

Temperature shifts trigger genome-wide changes in Escherichia coli's gene expression. We studied if chromosome integration impacts on a gene's sensitivity to these shifts, by comparing the single-RNA production kinetics of a PLacO3O1 promoter, when chromosomally-integrated and when single-copy plasmid-borne. At suboptimal temperatures their induction range, fold change, and response to decreasing temperatures are similar. At critically low temperatures, the chromosome-integrated promoter becomes weaker and noisier. Dissection of its initiation kinetics reveals longer lasting states preceding open complex formation, suggesting enhanced supercoiling buildup. Measurements with Gyrase and Topoisomerase I inhibitors suggest hindrance to escape supercoiling buildup at low temperatures. Consistently, similar phenomena occur in energy-depleted cells by DNP at 30 °C. Transient, critically-low temperatures have no long-term consequences, as raising temperature quickly restores transcription rates. We conclude that the chromosomally-integrated PLacO3O1 has higher sensitivity to low temperatures, due to longer-lasting super-coiled states. A lesser active, chromosome-integrated native lac is shown to be insensitive to Gyrase overexpression, even at critically low temperatures, indicating that the rate of escaping positive supercoiling buildup is temperature and transcription rate dependent. A genome-wide analysis supports this, since cold-shock genes exhibit atypical supercoiling-sensitivities. This phenomenon might partially explain the temperature-sensitivity of some transcriptional programs of E. coli.


Assuntos
Cromossomos Bacterianos/genética , Escherichia coli/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Plasmídeos/genética , Temperatura Baixa , DNA Super-Helicoidal/efeitos dos fármacos , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Imagem Individual de Molécula , Estresse Fisiológico , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase II/farmacologia , Sequenciamento Completo do Genoma
13.
Biochim Biophys Acta Gene Regul Mech ; 1862(2): 119-128, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30557610

RESUMO

Genetic circuits change the status quo of cellular processes when their protein numbers cross thresholds. We investigate the regulation of RNA and protein threshold crossing propensities in Escherichia coli. From in vivo single RNA time-lapse microscopy data from multiple promoters, mutants, induction schemes and media, we study the asymmetry and tailedness (quantified by the skewness and kurtosis, respectively) of the distributions of time intervals between transcription events. We find that higher thresholds can be reached by increasing the skewness and kurtosis, which is shown to be achievable without affecting mean and coefficient of variation, by regulating the rate-limiting steps in transcription initiation. Also, they propagate to the skewness and kurtosis of the distributions of protein expression levels in cell populations. The results suggest that the asymmetry and tailedness of RNA and protein numbers in cell populations, by controlling the propensity for threshold crossing, and due to being sequence dependent and subject to regulation, may be key regulatory variables of decision-making processes in E. coli.


Assuntos
Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Modelos Genéticos , Transcrição Gênica , Escherichia coli , Proteínas de Escherichia coli/análise , Genes Bacterianos , Cinética , Microscopia , RNA Bacteriano/análise , Análise de Célula Única , Imagem com Lapso de Tempo
14.
R Soc Open Sci ; 5(11): 181170, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30564410

RESUMO

Bacterial gene expression regulation occurs mostly during transcription, which has two main rate-limiting steps: the close complex formation, when the RNA polymerase binds to an active promoter, and the subsequent open complex formation, after which it follows elongation. Tuning these steps' kinetics by the action of e.g. transcription factors, allows for a wide diversity of dynamics. For example, adding autoregulation generates single-gene circuits able to perform more complex tasks. Using stochastic models of transcription kinetics with empirically validated parameter values, we investigate how autoregulation and the multi-step transcription initiation kinetics of single-gene autoregulated circuits can be combined to fine-tune steady state mean and cell-to-cell variability in protein expression levels, as well as response times. Next, we investigate how they can be jointly tuned to control complex behaviours, namely, time counting, switching dynamics and memory storage. Overall, our finding suggests that, in bacteria, jointly regulating a single-gene circuit's topology and the transcription initiation multi-step dynamics allows enhancing complex task performance.

15.
Bioinformatics ; 34(24): 4318-4320, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29931314

RESUMO

Summary: Each cell is a phenotypically unique individual that is influenced by internal and external processes, operating in parallel. To characterize the dynamics of cellular processes one needs to observe many individual cells from multiple points of view and over time, so as to identify commonalities and variability. With this aim, we engineered a software, 'SCIP', to analyze multi-modal, multi-process, time-lapse microscopy morphological and functional images. SCIP is capable of automatic and/or manually corrected segmentation of cells and lineages, automatic alignment of different microscopy channels, as well as detect, count and characterize fluorescent spots (such as RNA tagged by MS2-GFP), nucleoids, Z rings, Min system, inclusion bodies, undefined structures, etc. The results can be exported into *mat files and all results can be jointly analyzed, to allow studying not only each feature and process individually, but also find potential relationships. While we exemplify its use on Escherichia coli, many of its functionalities are expected to be of use in analyzing other prokaryotes and eukaryotic cells as well. We expect SCIP to facilitate the finding of relationships between cellular processes, from small-scale (e.g. gene expression) to large-scale (e.g. cell division), in single cells and cell lineages. Availability and implementation: http://www.ca3-uninova.org/project_scip. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Processamento de Imagem Assistida por Computador , Microscopia , Análise de Célula Única/métodos , Software , Divisão Celular , Linhagem da Célula
16.
Phys Biol ; 15(5): 056002, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29717708

RESUMO

Cell division in Escherichia coli is morphologically symmetric due to, among other things, the ability of these cells to place the Z-ring at midcell. Studies have reported that, at sub-optimal temperatures, this symmetry decreases at the single-cell level, but the causes remain unclear. Using fluorescence microscopy, we observe FtsZ-GFP and DAPI-stained nucleoids to assess the robustness of the symmetry of Z-ring formation and positioning in individual cells under sub-optimal and critical temperatures. We find the Z-ring formation and positioning to be robust at sub-optimal temperatures, as the Z-ring's mean width, density and displacement from midcell maintain similar levels of correlation to one another as at optimal temperatures. However, at critical temperatures, the Z-ring displacement from midcell is greatly increased. We present evidence showing that this is due to enhanced distance between the replicated nucleoids and, thus, reduced Z-ring density, which explains the weaker precision in setting a morphologically symmetric division site. This also occurs in rich media and is cumulative, i.e. combining richer media and critically high temperatures enhances the asymmetries in division, which is evidence that the causes are biophysical. To further support this, we show that the effects are reversible, i.e. shifting cells from optimal to critical, and then to optimal again, reduces and then enhances the symmetry in Z-ring positioning, respectively, as the width and density of the Z-ring return to normal values. Overall, our findings show that the Z-ring positioning in E. coli is a robust biophysical process under sub-optimal temperatures, and that critical temperatures cause significant asymmetries in division.


Assuntos
Proteínas de Bactérias/análise , Proteínas do Citoesqueleto/análise , Escherichia coli/citologia , Proteínas de Bactérias/metabolismo , Divisão Celular , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/metabolismo , Microscopia de Fluorescência , Análise de Célula Única , Temperatura
17.
Phys Biol ; 15(2): 026007, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29182518

RESUMO

From in vivo single-cell, single-RNA measurements of the activation times and subsequent steady-state active transcription kinetics of a single-copy Lac-ara-1 promoter in Escherichia coli, we characterize the intake kinetics of the inducer (IPTG) from the media, following temperature shifts. For this, for temperature shifts of various degrees, we obtain the distributions of transcription activation times as well as the distributions of intervals between consecutive RNA productions following activation in individual cells. We then propose a novel methodology that makes use of deconvolution techniques to extract the mean and the variability of the distribution of intake times. We find that cells, following shifts to low temperatures, have higher intake times, although, counter-intuitively, the cell-to-cell variability of these times is lower. We validate the results using a new methodology for direct estimation of mean intake times from measurements of activation times at various inducer concentrations. The results confirm that E. coli's inducer intake times from the environment are significantly higher following a shift to a sub-optimal temperature. Finally, we provide evidence that this is likely due to the emergence of additional rate-limiting steps in the intake process at low temperatures, explaining the reduced cell-to-cell variability in intake times.


Assuntos
Escherichia coli/genética , Análise de Célula Única , Temperatura , Ativação Transcricional , Cinética
18.
Sci Rep ; 7(1): 10588, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28878283

RESUMO

Cell-to-cell variability in cellular components generates cell-to-cell diversity in RNA and protein production dynamics. As these components are inherited, this should also cause lineage-to-lineage variability in these dynamics. We conjectured that these effects on transcription are promoter initiation kinetics dependent. To test this, first we used stochastic models to predict that variability in the numbers of molecules involved in upstream processes, such as the intake of inducers from the environment, acts only as a transient source of variability in RNA production numbers, while variability in the numbers of a molecular species controlling transcription of an active promoter acts as a constant source. Next, from single-cell, single-RNA level time-lapse microscopy of independent lineages of Escherichia coli cells, we demonstrate the existence of lineage-to-lineage variability in gene activation times and mean RNA production rates, and that these variabilities differ between promoters and inducers used. Finally, we provide evidence that this can be explained by differences in the kinetics of the rate-limiting steps in transcription between promoters and induction schemes. We conclude that cell-to-cell and consequent lineage-to-lineage variability in RNA and protein numbers are both promoter sequence-dependent and subject to regulation.


Assuntos
Regulação da Expressão Gênica , Transcrição Gênica , Algoritmos , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Modelos Biológicos , RNA Bacteriano/genética , Ativação Transcricional
19.
J Neurosci ; 37(2): 333-348, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28077713

RESUMO

Mitochondria play a variety of functional roles in cortical neurons, from metabolic support and neuroprotection to the release of cytokines that trigger apoptosis. In dendrites, mitochondrial structure is closely linked to their function, and fragmentation (fission) of the normally elongated mitochondria indicates loss of their function under pathological conditions, such as stroke and brain trauma. Using in vivo two-photon microscopy in mouse brain, we quantified mitochondrial fragmentation in a full spectrum of cortical injuries, ranging from severe to mild. Severe global ischemic injury was induced by bilateral common carotid artery occlusion, whereas severe focal stroke injury was induced by Rose Bengal photosensitization. The moderate and mild traumatic injury was inflicted by focal laser lesion and by mild photo-damage, respectively. Dendritic and mitochondrial structural changes were tracked longitudinally using transgenic mice expressing fluorescent proteins localized either in cytosol or in mitochondrial matrix. In response to severe injury, mitochondrial fragmentation developed in parallel with dendritic damage signified by dendritic beading. Reconstruction from serial section electron microscopy confirmed mitochondrial fragmentation. Unlike dendritic beading, fragmentation spread beyond the injury core in focal stroke and focal laser lesion models. In moderate and mild injury, mitochondrial fragmentation was reversible with full recovery of structural integrity after 1-2 weeks. The transient fragmentation observed in the mild photo-damage model was associated with changes in dendritic spine density without any signs of dendritic damage. Our findings indicate that alterations in neuronal mitochondria structure are very sensitive to the tissue damage and can be reversible in ischemic and traumatic injuries. SIGNIFICANCE STATEMENT: During ischemic stroke or brain trauma, mitochondria can either protect neurons by supplying ATP and adsorbing excessive Ca2+, or kill neurons by releasing proapoptotic factors. Mitochondrial function is tightly linked to their morphology: healthy mitochondria are thin and long; dysfunctional mitochondria are thick (swollen) and short (fragmented). To date, fragmentation of mitochondria was studied either in dissociated cultured neurons or in brain slices, but not in the intact living brain. Using real-time in vivo two-photon microscopy, we quantified mitochondrial fragmentation during acute pathological conditions that mimic severe, moderate, and mild brain injury. We demonstrated that alterations in neuronal mitochondria structural integrity can be reversible in traumatic and ischemic injuries, highlighting mitochondria as a potential target for therapeutic interventions.


Assuntos
Lesões Encefálicas/diagnóstico por imagem , Isquemia Encefálica/diagnóstico por imagem , Microscopia de Fluorescência por Excitação Multifotônica , Mitocôndrias/patologia , Neocórtex/diagnóstico por imagem , Neurônios/patologia , Anestesia/métodos , Animais , Lesões Encefálicas/metabolismo , Isquemia Encefálica/metabolismo , Dendritos/metabolismo , Dendritos/patologia , Feminino , Corantes Fluorescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Mitocôndrias/metabolismo , Neocórtex/metabolismo , Neurônios/metabolismo
20.
Biophys J ; 111(11): 2512-2522, 2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27926852

RESUMO

We studied whether nucleoid exclusion contributes to the segregation and retention of Tsr chemoreceptor clusters at the cell poles. Using live time-lapse, single-cell microscopy measurements, we show that the single-cell spatial distributions of Tsr clusters have heterogeneities and asymmetries that are consistent with nucleoid exclusion and cannot be explained by the diffusion-and-capture mechanism supported by Tol-Pal complexes at the poles. Also, in cells subjected to ampicillin, which enhances relative nucleoid lengths, Tsr clusters locate relatively closer to the cell extremities, whereas in anucleated cells (deletion mutants for mukB), the Tsr clusters are closer to midcell. In addition, we find that the fraction of Tsr clusters at the poles is smaller in deletion mutants for Tol-Pal than in wild-type cells, although it is still larger than would be expected by chance. Also in deletion mutants, the distribution of Tsr clusters differs widely between cells with relatively small and large nucleoids, in a manner consistent with nucleoid exclusion from midcell. This comparison further showed that diffusion-and-capture by Tol-Pal complexes and nucleoid exclusion from the midcell have complementary effects. Subsequently, we subjected deletion mutants to suboptimal temperatures that are known to enhance cytoplasm viscosity, which hampers nucleoid exclusion effects. As the temperature was lowered, the fraction of clusters at the poles decreased linearly. Finally, a stochastic model including nucleoid exclusion at midcell and diffusion-and-capture due to Tol-Pal at the poles is shown to exhibit a cluster dynamics that is consistent with the empirical data. We conclude that nucleoid exclusion also contributes to the preference of Tsr clusters for polar localization.


Assuntos
Núcleo Celular/metabolismo , Escherichia coli/citologia , Proteínas Quimiotáticas Aceptoras de Metil/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Simulação por Computador , Citoplasma/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Biológicos , Transporte Proteico , Processos Estocásticos , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...