Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 237(Pt 2): 117095, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37683784

RESUMO

The raw materials for the tanning industry, namely hides and skins, are preserved (curing stage) and carried with common salt, i.e., sodium chloride (NaCl). Proceeding to conversion into leather, pickling is a key stage of the tannery process, which entails high demand of water and salt. In this work, the salt-derived brine (SdB) generated from the curing of hides was treated by iron-driven electrocoagulation (EC), aiming at its later application in the pickling stage of the tanning industry, promoting a transition to zero waste emission policy. Focusing on reducing the brine's total organic carbon (TOC), central composite rotational design and response surface methodology were adopted to study the effect of electrolysis time (6.2-14.2 min) and current density (74-431 A·m-2) on the treatment of the SdB (≅ 7.5 % wt. NaCl). The quality of the treated brines was then assessed in pickling trials and compared with virgin brine. 68-83 % removal of TOC from the SdB were achieved under electrolysis time ranging 6.2-14.2 min and current density ranging 126-252 A·m-2. Under these operating ranges the quality of the wet-blue leathers was guaranteed. Lowest power consumption (0.44 kWh·m-3) was achieved under electrolysis time of 6 min and current density of 126 A·m-2, yielding 68 % removal of TOC. Moreover, the shrinkage temperature of the hides was improved with treated brine (103.5 °C-110.5 °C) compared to virgin brine (103.0 °C). The present study provides strong evidence that contaminated salt from the curing stage can be valorised within the tanning industry through electrocoagulation treatment and then used in another production stage, instead of being landfilled.

2.
Environ Pollut ; 317: 120777, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36464117

RESUMO

The work describes the combination of granulated biomass fly ash (GBFA) with Fenton process to enhance the removal of adsorbable organic halides (AOX) from pulp bleaching wastewater. At optimal operating conditions, wastewater's chemical and biochemical oxygen demand (COD and BOD5, respectively) and colour were also quantified, and operating cost of treatment assessed. For the first time, raw pulp bleaching wastewater was used to granulate BFA, instead of water, reducing the water footprint of the treatment. Five wastewater treatment setups were studied: (i) conventional Fenton process; (ii) GBFA application; (iii) simultaneous application of GBFA and Fenton process; (iv) sequential treatment by GBFA followed by Fenton process; (v) sequential treatment by Fenton process followed by GBFA. The latter yielded the highest AOX removal (60-70%), whilst COD was also reduced (≈15%) and wastewater biodegradability (BOD5/COD) was enhanced from 0.075 to a maximum of 0.134. Another positive feature of the proposed solution was that GBFA were successfully recovered and reused without regeneration, yielding similar AOX removal compared with fresh GBFA. The operating cost of removing 1 g of AOX from the pulp bleaching wastewater by the optimal treatment setup (60-70% removal of AOX) was 14-26% lower than the operating cost of conducting Fenton process alone (50% removal of AOX).


Assuntos
Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Cinza de Carvão , Biomassa , Peróxido de Hidrogênio , Oxirredução , Eliminação de Resíduos Líquidos
3.
Environ Pollut ; 310: 119850, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35944783

RESUMO

In this work, the performance of residual iron dust (RID) from metallurgic industry was assessed as Fenton catalyst for the treatment of real pulp bleaching wastewater. The focus was on the removal of recalcitrant pollutants AOX (adsorbable organic halides), by a novel, cleaner, and cost-effective circular solution based on a waste-derived catalyst. The behaviour of RID as iron source was firstly assessed by performing leaching tests at different RID:wastewater w/v ratios and contact time. Afterwards, RID-catalysed homogeneous and heterogeneous Fenton processes were conducted to maximise AOX removal from the pulp bleaching wastewater. Reusability of RID was assessed by a simple collect-and-reuse methodology, without any modification. Similar AOX removal under less consumption of chemicals was achieved with the novel heterogeneous Fenton process. Reaction in the bulk solution was the main pathway of AOX removal, given that the low surface area and porosity of the material did not allow for a high contribution of surface reaction to the overall performance. Moreover, AOX removal was similar over two consecutive treatment cycles, with Fenton process being responsible for 56.7-62.1% removal of AOX from the wastewater, and the leaching step adding 11.4-13.2%. At the end of treatment, COD either decreased (1st cycle) or remained unchanged (2nd and 3rd cycle). The operating cost of the optimised heterogeneous Fenton was 3-11% lower than under conventional Fenton process. This work presented a novel, circular solution based on a low-cost waste-derived catalyst, advancing the knowledge needed to foster industrial application of such technologies to increase industrial environmental performance and efficiency.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Poeira , Peróxido de Hidrogênio , Ferro , Oxirredução , Eliminação de Resíduos Líquidos , Águas Residuárias
4.
Environ Res ; 197: 110957, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33711321

RESUMO

This study reviews the recent developments in the application of Fenton processes in real industrial wastewater treatment, focusing on heterogeneous catalysts and catalyst regeneration/reuse. This article presents the features, inherent advantages or drawbacks, and primary experimental results obtained on established and emerging Fenton processes, highlighting the course of innovations and current scenario in a research field that has recently undergone rapid transition. Therefore, a comprehensive literature survey was conducted to review studies published over the last decade dealing with application of Fenton processes to industrial wastewater treatment. The research in this field is primarily focused on discovering or synthesizing new materials to substitute conventional iron salt Fenton catalysts and/or regenerate and reuse the spent catalyst, in contrast to optimizing the application of existing materials. Hence, the emphasis is on producing reusable materials, transitioning from linear to circular economy. Some of the major challenges identified herein include analyzing or improving heterogeneous catalyst lifetime, determining the predominant pathway of heterogeneous and homogeneous catalysis to pollutant degradation, and defining the best layout to incorporate Fenton processes into full-scale treatment plants, particularly its coupling with biological treatment.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Catálise , Peróxido de Hidrogênio , Oxirredução , Águas Residuárias , Poluentes Químicos da Água/análise
5.
Environ Sci Pollut Res Int ; 24(18): 15270-15277, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28500551

RESUMO

An experimental study was conducted at field conditions in order to evaluate the effect of application of ash from biomass combustion on some soil fertility characteristics and plant growth. Application of 7.5 Mg ha-1 industrial fly ash (IA), domestic ash (DA), and a 50:50 mix of domestic ash (DA) and spent coffee grounds (SCG) was made in different soil parcels. Lolium perenne seeds were sown and the grown biomass was harvested and quantified after 60 days. Soil samples from each parcel were also collected after that period and characterized. Both soil and grown biomass samples were analyzed for Ca, Mg, Na, K, P, Fe, Mn, Zn, and Al contents. Soil pH was determined before and after amendment. All applications rose significantly soil pH. Domestic ash, whether combined with coffee grounds or not, proved to be efficient at supplying available macronutrients Ca, Mg, K, and P to the soil and also reducing availability of Al (more than industrial ash). However, it inhibited plant growth, even more when combined with spent coffee grounds. As regards to elemental abundance in plant tissue, both domestic ash treatments reduced Ca and enhanced Al contents, unlike industrial ash, which proved less harmful for the load applied in the soil. Hence, it was possible to conclude that application load should be a limiting factor for this management option for the studied materials.


Assuntos
Café , Eliminação de Resíduos , Poluentes do Solo , Biomassa , Cinza de Carvão , Solo
6.
Environ Sci Pollut Res Int ; 24(11): 10018-10029, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27889888

RESUMO

Combustion of residual forest biomass (RFB) derived from eucalypt (Eucalyptus globulus), pine (Pinus pinaster) and golden wattle (Acacia longifolia) was evaluated in a pilot-scale bubbling fluidised bed reactor (BFBR). During the combustion experiments, monitoring of temperature, pressure and exhaust gas composition has been made. Ash samples were collected at several locations along the furnace and flue gas treatment devices (cyclone and bag filter) after each combustion experiment and were analysed for their unburnt carbon content and chemical composition. Total suspended particles (TSP) in the combustion flue gas were evaluated at the inlet and outlet of cyclone and baghouse filter and further analysed for organic and elemental carbon, carbonates and 57 chemical elements. High particulate matter collection efficiencies in the range of 94-99% were observed for the baghouse, while removal rates of only 1.4-17% were registered for the cyclone. Due to the sand bed, Si was the major element in bottom ashes. Fly ashes, in particular those from eucalypt combustion, were especially rich in CaO, followed by relevant amounts of SiO2, MgO and K2O. Ash characteristics varied among experiments, showing that their inorganic composition strongly depends on both the biomass composition and combustion conditions. Inorganic constituents accounted for TSP mass fractions up to 40 wt%. Elemental carbon, organic matter and carbonates contributed to TSP mass fractions in the ranges 0.58-44%, 0.79-78% and 0.01-1.7%, respectively.


Assuntos
Biomassa , Dióxido de Silício , Carbono , Cinza de Carvão/química , Florestas , Incineração , Material Particulado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA