Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38803291

RESUMO

Cereal grains play an important role in human health as a source of macro- and micronutrients, besides phytochemicals. The metabolite diversity was investigated in cereal crops and their milling fractions by untargeted metabolomics ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) of 69 samples: 7 species (barley, oat, pearl millet, rye, sorghum, triticale, and wheat), 23 genotypes, and 4 milling fractions (husk, bran, flour, and wholegrain). Samples were also analyzed by in vitro antioxidant activity. UHPLC-MS/MS signals were processed using XCMS, and metabolite annotation was based on SIRIUS and GNPS libraries. Bran and husk showed the highest antioxidant capacity and phenolic content/diversity. The major metabolite classes were phenolic acids, flavonoids, fatty acyls, and organic acids. Sorghum, millet, barley, and oats showed distinct metabolite profiles, especially related to the bran fraction. Molecular networking and chemometrics provided a comprehensive insight into the metabolic profiling of cereal crops, unveiling the potential of coproducts and super cereals such as sorghum and millet as sources of polyphenols.

2.
Food Res Int ; 174(Pt 1): 113556, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37986434

RESUMO

Short germination is a process that can improve bioactive compounds in rice. This work aimed investigate the physical properties, phenolic compounds (PC), antioxidant activity and amino acids composition of husk + bran, brown and milled rice with high amylose content after short germination (16 h). α-amylase activity (Falling Number, FN) and enthalpy (ΔH) were unchanged (p < 0.05). RVA curve profiles were similar, even though after short germination and milling. Globally, metabolomics analysis identified 117 PC, in which 111 (bound), 104 (free) and 21 revealed in both extracts. p-Coumaric, trans-ferulic and ferulic acids were the most abundant PC revealed in all fractions. The portion husk + bran showed the highest level of total antioxidant activity (709.90 µmol TE) in both free and bound fractions. In terms of total amino acids, there was no statistical difference (p < 0.05) among non-germinated and germinated samples, contrary to free amino acids content. Glutamic acid (Glu) presented the highest values combining short germination and milling (1725-1900 mg/100 g) consequently, leads to higher value of GABA (12.21 mg/100 g). The combination of short germination and milling demonstrated a good strategy to improve the nutritional quality of rice, unless the thermal and pasting properties have been altered, contribute to potential health benefits on human nutrition.


Assuntos
Aminoácidos , Oryza , Humanos , Aminoácidos/análise , Antioxidantes/análise , Amilose/análise , Oryza/química , Fenóis/análise , Ácido Glutâmico/análise , Sementes/química
3.
Food Res Int ; 159: 111635, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35940815

RESUMO

Untargeted metabolomics analysis was applied to evaluate the phenolic profile of whole wheat bread with yerba mate (YM) during the bread-making process (flour, dough and bread). The free, bound and total phenolic contents of the samples evaluated by the Folin-Ciocalteu method showed the highest values for the flour, dough and bread samples prepared with 4.5% YM in fine and medium particle sizes (flour 181.48 - 175.26 mg GAE/g; dough 149.62 - 141.40 mg GAE/g; and bread 148.32 - 147.00 mg GAE/g). Globally, 104 phenolic compounds were tentatively identified, belonging to the five subclasses: flavonoids (35), phenolic acids (32), other polyphenols (10), stilbenes (2) and lignan (1). Of these compounds, 24 had the same m/z but showed different fragmentation profiles. A higher number of polyphenols was identified in the bound extracts (77%) than in the free extracts (59%). The addition of 4.5% of YM promoted an improved and more abundant profile of phenolic compounds in the dough and bread. The major compounds found in the samples containing YM were 5-caffeoylquinic acid and caffeic acid. The baking process did not adversely affect the abundance of phenolic compounds. The bread-making process positively affected the phenolic profile due to the release of bound phenolic compounds. At the same time, the addition of YM as a natural ingredient promoted an increase in the polyphenols in the bread.


Assuntos
Pão , Ilex paraguariensis , Antioxidantes/análise , Pão/análise , Fenóis/análise , Polifenóis/análise , Triticum
4.
Food Res Int ; 124: 118-128, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31466630

RESUMO

The phenolic-profiling of seven different wheat (Triticum aestivum) genotypes was investigated for the first time during different stages of grain development (milky, softy, physiological maturity and mature). Free and bound phenolic compounds were extracted separately and analyzed by UPLC-QTOF-MSE. Total phenolic content significantly decreased, up to 50% depending on the genotype, towards the maturation of grain. The highest content (free and bound) was observed in the most immature grains, while the lowest level was found in mature grains (408.0 and 165.0 GAE mg/100 g, respectively). Globally, 237 phenolic compounds were identified, divided into 5 classes: flavonoids (85), phenolic acids (77), other polyphenols (51), lignans (16) and stilbenes (8). UPLC-MS results showed a progressively decrease of the number of phenolic identification (ID) all along grain development, milky (213), softy (192), physiological maturity (169) and mature (144). The proportion bound to free phenolic progressively increased, reaching the maximum at physiological maturity, indicating a possible enzymatic reactions and complexation during grain growth. Ferulic acid, diphyllin, 4-hydroxybenzoic acid, ferulic acid isomer, apigenin 7-O-apiosyl-glucoside isomer and myricetin isomer were the most abundant compounds. Chemometric tools showed a clear separation between immature and mature grain for all genotypes. Phenolic profile varied significantly among genotypes, this result can help the selection of varieties towards a higher retention of bioactive compounds. Noteworthy, immature wheat grains can be considered a rich source of phenolic compounds and as an attractive ingredient to incorporate to functional foods.


Assuntos
Metabolômica/métodos , Fenóis/análise , Fenóis/metabolismo , Triticum/química , Triticum/metabolismo , Ácidos Cafeicos/análise , Ácidos Cafeicos/metabolismo , Cromatografia Líquida de Alta Pressão , Cinamatos/análise , Cinamatos/metabolismo , Ácidos Cumáricos/análise , Ácidos Cumáricos/metabolismo , Genótipo , Hidroxibenzoatos/análise , Hidroxibenzoatos/metabolismo , Espectrometria de Massas em Tandem , Triticum/genética , Triticum/crescimento & desenvolvimento
5.
Data Brief ; 21: 284-288, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30364702

RESUMO

This article contains data on phenolic-profiling of seven wheat genotypes along maturation (softy, milky, physiological maturity and mature). This supplementary data is related to research "Metabolomic approach for characterization of phenolic compounds in different wheat genotypes during grain development" (Santos et al., 2018). Briefly, free and bound phenolic compounds were extracted with 80% ethanol (v/v) and hydrolysis processes, respectively. The aliquots resultants were separated by ultra-performance liquid chromatography (UPLC) and analyzed by quadrupole time-of-flight mass spectrometry (QTOF). Data were acquired using a multiplexed MS/MS acquisition with alternating low and high energy acquisition (MSE). The phenolic compounds with their respective abundances are showed here through characterization table and multivariate analysis (hierarchical cluster analysis-HCA-and principal component analysis-PCA).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...