Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 10(9)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36140255

RESUMO

Abiraterone is a selective inhibitor of androgen biosynthesis approved for the treatment of metastatic patients affected by castration-resistant or castration-sensitive prostate cancer. Intriguingly, clinical data revealed that abiraterone also delayed disease progression in bone improving bone-related endpoints. Our group has previously demonstrated in vitro a direct effect of abiraterone on osteoclast and osteoblast function suggesting its ability to modulate bone microenvironment. Here, we performed an extensive proteomic analysis to investigate how abiraterone influences osteoblast cell secretome and, consequently, osteoblast/prostate cancer cells interaction. A panel of 507 soluble molecules were analyzed in osteoblast conditioned media (OCM) obtained from osteoblast treated or not with abiraterone. Subsequently, OCM was added to prostate cancer cells to investigate its potential effect on prostate cancer cell proliferation and androgen receptor (AR) activation status. Out of 507 screened molecules, 39 of them were differentially expressed in OCM from osteoblasts treated with abiraterone (OCM ABI) compared to OCM obtained from untreated OBs (OCM CTRL). Pathway enrichment analysis revealed that abiraterone down-modulated the release of specific osteoblast soluble factors, positively associated with cell proliferation pathways (false discovery rate adjusted p-value = 0.0019). In vitro validation data showed that OCM ABI treatment significantly reduced cancer proliferation in C4-2B cells (p = 0.022), but not in AR- negative PC-3 cells. Moreover, we also found a reduction in AR activation in C4-2B cells (p = 0.017) confirming the "indirect" anti-tumor AR-dependent effect of abiraterone mediated by osteoblasts. This study provides the first evidence of an additional antitumor effect of abiraterone through the modulation of multiple osteoblast proliferative signals.

2.
Cancers (Basel) ; 14(10)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35626040

RESUMO

Immune checkpoint inhibitors (ICIs) are largely used in the treatment of patients with advanced non-small-cell lung cancer (NSCLC). Novel biomarkers that provide biological information that could be useful for clinical management are needed. In this respect, extracellular vesicles (EV)-associated microRNAs (miRNAs) that are the principal vehicle of intercellular communication may be important sources of biomarkers. We analyzed the levels of 799 EV-miRNAs in the pretreatment plasma of 88 advanced NSCLC patients who received anti-PD-1 therapy as single agent. After data normalization, we used a two-step approach to identify candidate biomarkers associated to both objective response (OR) by RECIST and longer overall survival (OS). Univariate and multivariate analyses including known clinicopathologic variables and new findings were performed. In our cohort, 24/88 (27.3%) patients showed OR by RECIST. Median OS in the whole cohort was 11.5 months. In total, 196 EV-miRNAs out 799 were selected as expressed above background. After multiplicity adjustment, abundance of EV-miR-625-5p was found to be correlated with PD-L1 expression and significantly associated to OR by RECIST (p = 0.0366) and OS (p = 0.0031). In multivariate analysis, PD-L1 staining and EV-miR-625-5p levels were constantly associated to OR and OS. Finally, we showed that EV-miR-625-5p levels could discriminate patients with longer survival, in particular in the class expressing PD-L1 ≥50%. EV-miRNAs represent a source of relevant biomarkers. EV-miR-625-5p is an independent biomarker of response and survival in ICI-treated NSCLC patients, in particular in patients with PD-L1 expression ≥50%.

3.
Int J Mol Sci ; 23(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35269621

RESUMO

The CDK4/6 inhibitors (CDKi) palbociclib, ribociclib, and abemaciclib are currently approved in combination with anti-estrogen therapy for the treatment of advanced and/or metastatic hormone receptor-positive/HER2-neu-negative breast cancer patients. Given the high incidence of bone metastases in this population, we investigated and compared the potential effects of palbociclib, ribociclib, and abemaciclib on the breast cancer bone microenvironment. Primary osteoclasts (OCs) and osteoblasts (OBs) were obtained from human monocyte and mesenchymal stem cells, respectively. OC function was evaluated by tartrate-resistant acid phosphatase assay and real-time PCR; OB activity was assessed by an alizarin red assay. OB/breast cancer co-culture models were generated via the seeding of MCF-7 cells on a layer of OBs, and tumor cell proliferation was analyzed using flow cytometry. Here, we showed that ribociclib, palbociclib, and abemaciclib exerted similar inhibitory effects on the OC differentiation and expression of bone resorption markers without affecting OC viability. On the other hand, the three CDKi did not affect the ability of OB to produce bone matrix, even if the higher doses of palbociclib and abemaciclib reduced the OB viability. In OB/MCF-7 co-culture models, palbociclib demonstrated a lower anti-tumor effect than ribociclib and abemaciclib. Overall, our results revealed the direct effects of CDKi on the tumor bone microenvironment, highlighting differences potentially relevant for clinical practice.


Assuntos
Neoplasias da Mama , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Benzimidazóis , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Proteínas Inibidoras de Quinase Dependente de Ciclina , Feminino , Humanos , Piperazinas , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Purinas , Piridinas , Microambiente Tumoral
4.
Front Oncol ; 11: 789885, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966687

RESUMO

Patients with metastatic prostate cancer frequently develop bone metastases that elicit significant skeletal morbidity and increased mortality. The high tropism of prostate cancer cells for bone and their tendency to induce the osteoblastic-like phenotype are a result of a complex interplay between tumor cells and osteoblasts. Although the role of osteoblasts in supporting prostate cancer cell proliferation has been reported by previous studies, their precise contribution in tumor growth remains to be fully elucidated. Here, we tried to dissect the molecular signaling underlining the interactions between castration-resistant prostate cancer (CRPC) cells and osteoblasts using in vitro co-culture models. Transcriptomic analysis showed that osteoblast-conditioned media (OCM) induced the overexpression of genes related to cell cycle in the CRPC cell line C4-2B but, surprisingly, reduced androgen receptor (AR) transcript levels. In-depth analysis of AR expression in C4-2B cells after OCM treatment showed an AR reduction at the mRNA (p = 0.0047), protein (p = 0.0247), and functional level (p = 0.0029) and, concomitantly, an increase of C4-2B cells in S-G2-M cell cycle phases (p = 0.0185). An extensive proteomic analysis revealed in OCM the presence of some molecules that reduced AR activation, and among these, Matrix metalloproteinase-1 (MMP-1) was the only one able to block AR function (0.1 ng/ml p = 0.006; 1 ng/ml p = 0.002; 10 ng/ml p = 0.0001) and, at the same time, enhance CRPC proliferation (1 ng/ml p = 0.009; 10 ng/ml p = 0.033). Although the increase of C4-2B cell growth induced by MMP-1 did not reach the proliferation levels observed after OCM treatment, the addition of Vorapaxar, an MMP-1 receptor inhibitor (Protease-activated receptor-1, PAR-1), significantly reduced C4-2B cell cycle (0.1 µM p = 0.014; 1 µM p = 0.0087). Overall, our results provide a novel AR-independent mechanism of CRPC proliferation and suggest that MMP-1/PAR-1 could be one of the potential pathways involved in this process.

5.
Biology (Basel) ; 10(8)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34440012

RESUMO

BACKGROUND: The presence of bone metastases in renal cell carcinoma (RCC) negatively affects patients' survival. Data from clinical trials has highlighted a significant benefit of cabozantinib in bone metastatic RCC patients. Here, we evaluated the antitumor effect of cabozantinib in coculture models of renal cell carcinoma (RCC) and osteoblasts (OBs) to investigate whether and how its antiproliferative activity is influenced by OBs. METHODS: Bone/RCC models were generated, coculturing green fluorescent protein (GFP)-tagged Caki-1 and 786-O cells with human primary OBs in a "cell-cell contact" system. RCC proliferation and the OB molecular profile were evaluated after the cabozantinib treatment. RESULTS: The Caki-1 cell proliferation increased in the presence of OBs (p < 0.0001), while the 786-O cell growth did not change in the coculture with the OBs. The cabozantinib treatment reduced the proliferation of both the Caki-1 (p < 0.0001) and 786-O (p = 0.03) cells cocultured with OBs. Intriguingly, the inhibitory potency of cabozantinib was higher when Caki-1 cells grew in presence of OBs compared to a monoculture (p < 0.001), and this was similar in 786-O cells alone or cocultured with OBs. Moreover, the OB pretreatment with cabozantinib "indirectly" inhibited Caki-1 cell proliferation (p = 0.040) without affecting 786-O cell growth. Finally, we found that cabozantinib was able to modulate the OB gene and molecular profile inhibiting specific proliferative signals that, in turn, could affect RCC cell growth. CONCLUSIONS: Overall, the "direct" effect of cabozantinib on OBs "indirectly" increased its antitumor activity in metastatic RCC Caki-1 cells but not in the primary 786-O model.

6.
Oncogene ; 40(7): 1284-1299, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33420367

RESUMO

Bone metastasis remains a major cause of mortality and morbidity in breast cancer. Therefore, there is an urgent need to better select high-risk patients in order to adapt patient's treatment and prevent bone recurrence. Here, we found that integrin alpha5 (ITGA5) was highly expressed in bone metastases, compared to lung, liver, or brain metastases. High ITGA5 expression in primary tumors correlated with the presence of disseminated tumor cells in bone marrow aspirates from early stage breast cancer patients (n = 268; p = 0.039). ITGA5 was also predictive of poor bone metastasis-free survival in two separate clinical data sets (n = 855, HR = 1.36, p = 0.018 and n = 427, HR = 1.62, p = 0.024). This prognostic value remained significant in multivariate analysis (p = 0.028). Experimentally, ITGA5 silencing impaired tumor cell adhesion to fibronectin, migration, and survival. ITGA5 silencing also reduced tumor cell colonization of the bone marrow and formation of osteolytic lesions in vivo. Conversely, ITGA5 overexpression promoted bone metastasis. Pharmacological inhibition of ITGA5 with humanized monoclonal antibody M200 (volociximab) recapitulated inhibitory effects of ITGA5 silencing on tumor cell functions in vitro and tumor cell colonization of the bone marrow in vivo. M200 also markedly reduced tumor outgrowth in experimental models of bone metastasis or tumorigenesis, and blunted cancer-associated bone destruction. ITGA5 was not only expressed by tumor cells but also osteoclasts. In this respect, M200 decreased human osteoclast-mediated bone resorption in vitro. Overall, this study identifies ITGA5 as a mediator of breast-to-bone metastasis and raises the possibility that volociximab/M200 could be repurposed for the treatment of ITGA5-positive breast cancer patients with bone metastases.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Integrinas/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Idoso , Anticorpos Monoclonais/administração & dosagem , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Metástase Neoplásica , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Osteólise/genética , Intervalo Livre de Progressão
7.
Expert Opin Biol Ther ; 20(11): 1261-1274, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32835531

RESUMO

INTRODUCTION: Prolonged use of anti-cancer treatments in breast and prostate tumors alters physiological bone turnover leading to adverse skeletal related events, such as osteoporosis, loss of bone mass, and increased risk of fractures. These complications known as cancer treatment-induced bone loss (CTIBL) should be managed with bone targeting agents such as the bisphosphonates and denosumab. The latter is a monoclonal antibody against the receptor activator of nuclear factor-kB ligand (RANKL) that suppresses osteoclasts function and survival increasing bone mass. AREAS COVERED: This review will focus on the mechanisms associated with bone loss induced by cancer treatments and the most recent evidence about the use of denosumab as preventive and therapeutic strategy to protect bone health. Moreover, we will discuss several key aspects regarding the clinical practical use of denosumab to optimize the management of CTLIB in breast and prostate cancer. EXPERT OPINION: Denosumab treatment strongly prevents cancer therapies-related skeletal issues in breast and prostate cancer with a good safety profile. Adjuvant six-monthly denosumab delays the time to first fracture onset in early stage breast cancer patients with normal or altered bone mineral density (BMD). Similarly, denosumab treatment is able to prevent fractures and BMD loss in nonmetastatic prostate cancer patients.


Assuntos
Conservadores da Densidade Óssea/uso terapêutico , Reabsorção Óssea/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Denosumab/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Densidade Óssea/efeitos dos fármacos , Remodelação Óssea/efeitos dos fármacos , Reabsorção Óssea/etiologia , Neoplasias da Mama/complicações , Neoplasias da Mama/patologia , Feminino , Fraturas Ósseas/etiologia , Fraturas Ósseas/patologia , Fraturas Ósseas/prevenção & controle , Humanos , Masculino , Osteoclastos/efeitos dos fármacos , Osteoclastos/fisiologia , Osteoporose/tratamento farmacológico , Osteoporose/epidemiologia , Osteoporose/etiologia , Neoplasias da Próstata/patologia
8.
Front Oncol ; 10: 789, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582538

RESUMO

Bone is one of the preferential sites of distant metastases from malignant tumors, with the highest prevalence observed in breast and prostate cancers. Patients with bone metastases (BMs) may experience skeletal-related events, such as severe bone pain, pathological fractures, spinal cord compression, and hypercalcemia, with negative effects on the quality of life. In the last decades, a deeper understanding of the molecular mechanisms underlying the BM onset has been gained, leading to the development of bone-targeting agents. So far, most of the research has been focused on the pathophysiology and treatment of BM, with only relatively few studies investigating potential predictors of risk for BM development. The ability to select such "high-risk" patients could allow early identification of those most likely to benefit from interventions to prevent or delay BM. This review summarizes several evidences for the potential use of specific biomarkers able to predict early the BM development.

10.
J Exp Clin Cancer Res ; 39(1): 95, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32460897

RESUMO

In a large number of cancer types, treatment selection depends on the presence of specific tumor biomarkers. Due to the dynamic nature of cancer, very often these predictive biomarkers are not uniformly present in all cancer cells. Tumor heterogeneity represents indeed one of the main causes of therapeutic failure, and its decoding remains a major ongoing challenge in the field.Liquid biopsy is the sampling and analysis of non-solid biological tissue often through rapid and non-invasive methods, which allows the assessment in real-time of the evolving landscape of cancer. Samples can be obtained from blood and most other bodily fluids. A blood-based liquid biopsy can capture circulating tumor cells and leukocytes, as well as circulating tumor-derived nucleic acids.In this review, we discuss the current and possibly future applications of blood-based liquid biopsy in oncology, its advantages and its limitations in clinical practice. We specifically focused on its role as a tool to capture tumor heterogeneity in metastatic cancer patients.


Assuntos
Biomarcadores Tumorais/análise , DNA Tumoral Circulante/análise , Neoplasias/patologia , Células Neoplásicas Circulantes/patologia , Animais , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/genética , Humanos , Biópsia Líquida , Metástase Neoplásica , Neoplasias/sangue , Neoplasias/genética , Células Neoplásicas Circulantes/metabolismo
11.
Sci Rep ; 10(1): 1288, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992773

RESUMO

Receptor-activator of nuclear-factor -κB-ligand (RANKL) and its receptor RANK have been recently identified as key players in breast cancer bone metastases. Since Circulating Tumor Cells (CTCs) are considered a crucial step of metastatic process, we explored RANK expression on CTCs in metastatic breast cancer (MBC), and the predictive value of RANK-positive CTCs in monitoring patients during treatment with denosumab (anti-RANKL antibody). To this purpose, we developed a novel CTC assay to quantify RANK-positive CTCs in forty-two bone MBC patients, candidates to denosumab treatment. Companion algorithms ΔAUC and Slope were developed, and correlated with time to first skeletal-related-events (SRE), time to bone metastasis progression and time to visceral metastasis progression. Twenty-seven patients had at least one CTC at baseline and, among these, nineteen (70%) had one or more RANK-positive CTCs. Notably, the baseline total CTCs, but not the RANK-positive, were associated with Time-to-first-SRE, Time-to-Bone-Metastasis-Progression and Time-to-Visceral-Metastasis-Progression. Conversely, during treatment monitoring, positive ΔAUC value, expression of RANK-positive CTCs persistence, correlated with longer Time-to-first-SRE (p = 0.0002) and Time-to-Bone-Metastasis-Progression (p = 0.0012). Furthermore, the early increase at second day, in RANK-positive CTCs (Positive-Slope) was associated with delay in time-to-first-SRE (p = 0.0038) and Time-to-Bone-Metastasis-Progression (p = 0.0024). We demonstrate, for the first time, the expression of RANK on CTCs in MBC patients and that the persistence of RANK expression determines denosumab effectiveness.


Assuntos
Neoplasias da Mama , Denosumab/administração & dosagem , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Neoplasias/sangue , Células Neoplásicas Circulantes/metabolismo , Ligante RANK/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/sangue , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Pessoa de Meia-Idade , Metástase Neoplásica , Projetos Piloto
12.
Sci Rep ; 7(1): 8965, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827726

RESUMO

The possibility of detecting and classifying living cells in a label-free and non-invasive manner holds significant theranostic potential. In this work, Hyperspectral Imaging (HSI) has been successfully applied to the analysis of macrophagic polarization, given its central role in several pathological settings, including the regulation of tumour microenvironment. Human monocyte derived macrophages have been investigated using hyperspectral reflectance confocal microscopy, and hyperspectral datasets have been analysed in terms of M1 vs. M2 polarization by Principal Components Analysis (PCA). Following PCA, Linear Discriminant Analysis has been implemented for semi-automatic classification of macrophagic polarization from HSI data. Our results confirm the possibility to perform single-cell-level in vitro classification of M1 vs. M2 macrophages in a non-invasive and label-free manner with a high accuracy (above 98% for cells deriving from the same donor), supporting the idea of applying the technique to the study of complex interacting cellular systems, such in the case of tumour-immunity in vitro models.


Assuntos
Macrófagos/classificação , Macrófagos/citologia , Microscopia Confocal/métodos , Imagem Óptica/métodos , Humanos , Análise Multivariada , Análise de Componente Principal
13.
Crit Rev Oncol Hematol ; 112: 59-66, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28325265

RESUMO

Prostate cancer is one of the most common type of cancer in Western countries. Although the majority of patients with PCa have a minimally aggressive disease, some of them will experience relapse and formation of metastasis. Bone metastasis are a major cause of quality of life impairment and death among patients with metastatic prostate cancer. Different "bone targeted therapies" and several follow-up strategies were developed in order to optimize bone metastasis prevention and treatment. Nevertheless there is still a great clinical need of identifying patients more likely to benefit from those interventions as not all patients will develop metastatic disease and not all patients with metastatic disease will develop bone metastasis. Here we review markers predictive of bone metastasis occurrence that have been tested in clinical settings, particularly focusing on the ability of such markers to predict bone metastasis over visceral metastasis occurrence.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias da Próstata/patologia , Biomarcadores Tumorais/análise , Humanos , Masculino
14.
Oncotarget ; 8(12): 20113-20121, 2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-28223547

RESUMO

Cabozantinib, a c-MET and vascular endothelial growth factor receptor 2 inhibitor, demonstrated to prolong progression free survival and improve skeletal disease-related endpoints in castration-resistant prostate cancer and in metastatic renal carcinoma. Our purpose is to investigate the direct effect of cabozantinib on bone microenvironment using a total human model of primary osteoclasts and osteoblasts.Osteoclasts were differentiated from monocytes isolated from healthy donors; osteoblasts were derived from human mesenchymal stem cells obtained from bone fragments of orthopedic surgery patients. Osteoclast activity was evaluated by tartrate resistant acid phosphatase (TRAP) staining and bone resorption assays and osteoblast differentiation was detected by alkaline phosphatase and alizarin red staining.Our results show that non-cytotoxic doses of cabozantinib significantly inhibit osteoclast differentiation (p=0.0145) and bone resorption activity (p=0.0252). Moreover, cabozantinib down-modulates the expression of osteoclast marker genes, TRAP (p=0.006), CATHEPSIN K (p=0.004) and Receptor Activator of Nuclear Factor k B (RANK) (p=0.001). Cabozantinib treatment has no effect on osteoblast viability or differentiation, but increases osteoprotegerin mRNA (p=0.015) and protein levels (p=0.004) and down-modulates Receptor Activator of Nuclear Factor k B Ligand (RANKL) at both mRNA (p<0.001) and protein levels (p=0.043). Direct cell-to-cell contact between cabozantinib pre-treated osteoblasts and untreated osteoclasts confirmed the indirect anti-resorptive effect of cabozantinib.We demonstrate that cabozantinib inhibits osteoclast functions "directly" and "indirectly" reducing the RANKL/osteoprotegerin ratio in osteoblasts.


Assuntos
Anilidas/farmacologia , Reabsorção Óssea/tratamento farmacológico , Diferenciação Celular/efeitos dos fármacos , Osteoblastos/fisiologia , Osteoclastos/fisiologia , Osteogênese/fisiologia , Piridinas/farmacologia , Apoptose , Western Blotting , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Proliferação de Células , Células Cultivadas , Humanos , Técnicas Imunoenzimáticas , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptor Ativador de Fator Nuclear kappa-B/genética , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Breast Cancer Res ; 17: 121, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26328589

RESUMO

Bisphosphonates (BPs) are approved as standard therapy in breast cancer for the treatment of bone metastases, since they were demonstrated to reduce the prevalence of skeletal-related events including fractures and hypercalcemia. In the adjuvant setting, BPs can be given to prevent and treat tumor therapy-induced bone loss in premenopausal and postmenopausal women and, owing to their beneficial effect on bone turnover, have also been evaluated for prevention of bone metastases occurrence. In this article we will review the mechanisms through which BPs have been demonstrated to prevent premetastatic niche formation and cell proliferation in bone lesions. Moreover, preclinical evidence of antitumoral effects of BPs will be presented and results from the most important clinical trials will be described critically. BPs may clearly play a clinically important role in early breast cancer in a postmenopausal adjuvant setting.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Conservadores da Densidade Óssea/farmacologia , Conservadores da Densidade Óssea/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Difosfonatos/farmacologia , Difosfonatos/uso terapêutico , Animais , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos
16.
Expert Opin Emerg Drugs ; 20(4): 637-51, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26113304

RESUMO

INTRODUCTION: Bone metastases are virtually incurable resulting in significant disease morbidity, reduced quality of life and mortality. Bone provides a unique microenvironment whose local interactions with tumor cells offer novel targets for therapeutic interventions. Increased understanding of the pathogenesis of bone disease has led to the discovery and clinical utility of bone-targeted agents other than bisphosphonates and denosumab, currently, the standard of care in this setting. AREAS COVERED: In this review, we present the recent advances in molecular targeted therapies focusing on therapies that inhibit bone resorption and/or stimulate bone formation and novel anti-tumoral agents that exerts significant effects on skeletal metastases, nowadays available in clinical practice or in phase of development. EXPERT OPINION: New emergent bone target therapies radium-223, mTOR inhibitors, anti-androgens have demonstrated the ability to increase overall survival in bone metastatic patients, other compounds, such as ET-1 and SRC inhibitors, up to now failed to clearly confirm in clinical trials their promising preclinical data.


Assuntos
Antineoplásicos/uso terapêutico , Conservadores da Densidade Óssea/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Conservadores da Densidade Óssea/farmacologia , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Denosumab/farmacologia , Denosumab/uso terapêutico , Difosfonatos/farmacologia , Difosfonatos/uso terapêutico , Desenho de Fármacos , Humanos , Terapia de Alvo Molecular , Taxa de Sobrevida , Microambiente Tumoral
17.
Oncotarget ; 6(14): 12520-8, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25904051

RESUMO

Abiraterone acetate (ABI) is associated not only with a significant survival advantage in both chemotherapy-naive and -treated patients with metastatic castration-resistant prostate cancer (mCRPC), but also with a delay in time to development of Skeletal Related Events and in radiological skeletal progression. These bone benefits may be related to a direct effect on prostate cancer cells in bone or to a specific mechanism directed to bone microenvironment. To test this hypothesis we designed an in vitro study aimed to evaluate a potential direct effect of ABI on human primary osteoclasts/osteoblasts (OCLs/OBLs). We also assessed changes in bone turnover markers, serum carboxy-terminal collagen crosslinks (CTX) and alkaline phosphatase (ALP), in 49 mCRPC patients treated with ABI.Our results showed that non-cytotoxic doses of ABI have a statistically significant inhibitory effect on OCL differentiation and activity inducing a down-modulation of OCL marker genes TRAP, cathepsin K and metalloproteinase-9. Furthermore ABI promoted OBL differentiation and bone matrix deposition up-regulating OBL specific genes, ALP and osteocalcin. Finally, we observed a significant decrease of serum CTX values and an increase of ALP in ABI-treated patients.These findings suggest a novel biological mechanism of action of ABI consisting in a direct bone anabolic and anti-resorptive activity.


Assuntos
Androstenos/farmacologia , Antineoplásicos/farmacologia , Remodelação Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Fosfatase Alcalina/sangue , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Colágeno Tipo I/sangue , Ensaio de Imunoadsorção Enzimática , Humanos , Masculino , Peptídeos/sangue , Neoplasias de Próstata Resistentes à Castração/sangue , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA