Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biofactors ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38063391

RESUMO

Glycosaminoglycans are complex carbohydrates used as nutraceuticals for diverse applications. We studied the potential of the glycosaminoglycan dermatan sulfate (DS) to counteract the development of diet-induced obesity (DIO) using obesity-prone mice fed a high-fat diet (HFD) as a model. Oral DS supplementation protected the animals against HFD-induced increases in whole-body adiposity, visceral fat mass, adipocyte size, blood glucose levels, insulin resistance, and pro-inflammatory lipids levels in brown adipose tissue (BAT) and the liver, where it largely counteracted the HFD-induced changes in the nonpolar metabolome. Protection against DIO in the DS-supplemented mice occurred despite higher energy intake and appeared to be associated with increased energy expenditure, higher uncoupling protein 1 expression in BAT, decreased BAT "whitening," and an enhanced channeling of fuel substrates toward skeletal muscle. This work is the first preclinical study to examine the anti-obesity activity of DS tested individually in vivo. The results support possible uses of DS as an active component in functional foods/supplements to manage obesity and associated metabolic diseases.

2.
Brain Sci ; 13(10)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37891835

RESUMO

ß-carotene is a powerful antioxidant and dietary precursor of vitamin A whose role in maintaining mental health and cognitive performance, either alone or in combination with other dietary compounds, has been a topic of recent research. However, its effectiveness is still unclear. This systematic review, conducted according to the PRISMA guideline and assisted by the MySLR platform, addressed this issue. A total of 16 eligible original research articles were identified. Dietary intake or ß-carotene serum levels were associated with improved measures of cognitive function in 7 out of 10 epidemiological studies included. In intervention studies, ß-carotene consumption alone did not promote better cognitive function in the short term, but only in a long-term intervention with a mean duration of 18 years. However, all but one intervention study suggested the beneficial effects of ß-carotene supplementation at doses ranging from 6 mg to 50 mg per day in combination with a multicomplex such as vitamin E, vitamin C, zinc, or selenium for a period of 16 weeks to 20 years. Despite the current limitations, the available evidence suggests a potential association between ß-carotene dietary/supplementary intake and the maintenance of cognitive function. The ß-carotene most probably does not act alone but in synergy with other micronutrients.

3.
Front Pediatr ; 11: 1250731, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37772038

RESUMO

Background: Physical activity (PA) provides health benefits across the lifespan and improves many established cardiovascular risk factors that have a significant impact on overall mortality. However, discrepancies between self-reported and device-based measures of PA make it difficult to obtain consistent results regarding PA and its health effects. Moreover, PA may produce different health effects depending on the type, intensity, duration, and frequency of activities and individual factors such as age, sex, body weight, early life conditions/exposures, etc. Appropriate biomarkers relating the degree of PA level with its effects on health, especially in children and adolescents, are required and missing. The main objective of the INTEGRActiv study is to identify novel useful integrative biomarkers of PA and its effects on the body health in children and adolescents, who represent an important target population to address personalized interventions to improve future metabolic health. Methods/design: The study is structured in two phases. First, biomarkers of PA and health will be identified at baseline in a core cohort of 180 volunteers, distributed into two age groups: prepubertal (n = 90), and postpubertal adolescents (n = 90). Each group will include three subgroups (n = 30) with subjects of normal weight, overweight, and obesity, respectively. Identification of new biomarkers will be achieved by combining physical measures (PA and cardiorespiratory and muscular fitness, anthropometry) and molecular measures (cardiovascular risk factors, endocrine markers, cytokines and circulating miRNA in plasma, gene expression profile in blood cells, and metabolomics profiling in plasma). In the second phase, an educational intervention and its follow-up will be carried out in a subgroup of these subjects (60 volunteers), as a first validation step of the identified biomarkers. Discussion: The INTEGRActiv study is expected to provide the definition of PA and health-related biomarkers (PA-health biomarkers) in childhood and adolescence. It will allow us to relate biomarkers to factors such as age, sex, body weight, sleep behavior, dietary factors, and pubertal status and to identify how these factors quantitatively affect the biomarkers' responses. Taken together, the INTEGRActiv study approach is expected to help monitor the efficacy of interventions aimed to improve the quality of life of children/adolescents through physical activity. Clinical Trial Registration: ClinicalTrials.gov, Identifier NCT05907785.

5.
Nutrients ; 14(11)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35684059

RESUMO

Nicotinamide riboside, an NAD+ precursor, has been attracting a lot of attention in recent years due to its potential benefits against multiple metabolic complications and age-related disorders related to NAD+ decline in tissues. The metabolic programming activity of NR supplementation in early-life stages is much less known. Here, we studied the long-term programming effects of mild NR supplementation during the suckling period on lipid and oxidative metabolism in skeletal muscle and liver tissues using an animal model. Suckling male mice received a daily oral dose of NR or vehicle (water) from day 2 to 20 of age, were weaned at day 21 onto a chow diet, and at day 90 were distributed to either a high-fat diet (HFD) or a normal-fat diet for 10 weeks. Compared to controls, NR-treated mice were protected against HFD-induced triacylglycerol accumulation in skeletal muscle and displayed lower triacylglycerol levels and steatosis degree in the liver and distinct capacities for fat oxidation and decreased lipogenesis in both tissues, paralleling signs of enhanced sirtuin 1 and AMP-dependent protein kinase signaling. These pre-clinical findings suggest that mild NR supplementation in early postnatal life beneficially impacts lipid and energy metabolism in skeletal muscle and liver in adulthood, serving as a potential preventive strategy against obesity-related disorders characterized by ectopic lipid accumulation.


Assuntos
NAD , Niacinamida , Animais , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Metabolismo Energético , Metabolismo dos Lipídeos , Lipídeos/farmacologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , NAD/metabolismo , Niacinamida/análogos & derivados , Compostos de Piridínio , Triglicerídeos/metabolismo
6.
Nutrients ; 13(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34684608

RESUMO

Anti-obesity activity has been reported for beta-carotene (BC) supplementation at high doses and metformin (MET). We studied whether BC treatment at a closer to dietary dose and MET treatment at a lower than therapeutic dose are effective in ameliorating unwanted effects of an obesogenic diet and whether their combination is advantageous. Obesity-prone mice were challenged with a high-fat diet (HFD, 45% energy as fat) for 4 weeks while receiving a placebo or being treated orally with BC (3 mg/kg/day), MET (100 mg/kg/day), or their combination (BC+MET); a fifth group received a placebo and was kept on a normal-fat diet (10% energy as fat). HFD-induced increases in body weight gain and inguinal white adipose tissue (WAT) adipocyte size were attenuated maximally or selectively in the BC+MET group, in which a redistribution towards smaller adipocytes was noted. Cumulative energy intake was unaffected, yet results suggested increased systemic energy expenditure and brown adipose tissue activation in the treated groups. Unwanted effects of HFD on glucose control and insulin sensitivity were attenuated in the treated groups, especially BC and BC+MET, in which hepatic lipid content was also decreased. Transcriptional analyses suggested effects on skeletal muscle and WAT metabolism could contribute to better responses to the HFD, especially in the MET and BC+MET groups. The results support the benefits of the BC+MET cotreatment.


Assuntos
Dieta Hiperlipídica , Metformina/farmacologia , Substâncias Protetoras/farmacologia , beta Caroteno/farmacologia , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Adiposidade , Animais , Glicemia/metabolismo , Tamanho Celular , Metabolismo Energético/genética , Ácidos Graxos/sangue , Regulação da Expressão Gênica , Insulina/sangue , Masculino , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Aumento de Peso
7.
Nutr Res Rev ; 34(2): 276-302, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34057057

RESUMO

Dietary intake and tissue levels of carotenoids have been associated with a reduced risk of several chronic diseases, including cardiovascular diseases, type 2 diabetes, obesity, brain-related diseases and some types of cancer. However, intervention trials with isolated carotenoid supplements have mostly failed to confirm the postulated health benefits. It has thereby been speculated that dosing, matrix and synergistic effects, as well as underlying health and the individual nutritional status plus genetic background do play a role. It appears that our knowledge on carotenoid-mediated health benefits may still be incomplete, as the underlying mechanisms of action are poorly understood in relation to human relevance. Antioxidant mechanisms - direct or via transcription factors such as NRF2 and NF-κB - and activation of nuclear hormone receptor pathways such as of RAR, RXR or also PPARs, via carotenoid metabolites, are the basic principles which we try to connect with carotenoid-transmitted health benefits as exemplified with described common diseases including obesity/diabetes and cancer. Depending on the targeted diseases, single or multiple mechanisms of actions may play a role. In this review and position paper, we try to highlight our present knowledge on carotenoid metabolism and mechanisms translatable into health benefits related to several chronic diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Antioxidantes , Carotenoides , Suplementos Nutricionais , Humanos , Estado Nutricional
8.
J Nutr Biochem ; 95: 108770, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34000411

RESUMO

Metabolic programming by dietary chemicals consumed in early life stages is receiving increasing attention. We here studied long-term effects of mild resveratrol (RSV) supplementation during lactation on muscular and hepatic lipid metabolism in adulthood. Newborn male mice received RSV or vehicle from day 2-20 of age, were weaned onto a chow diet on day 21, and were assigned to either a high-fat diet (HFD) or a normal-fat diet on day 90 of age for 10 weeks. RSV-treated mice showed in adulthood protection against HFD-induced triacylglycerol accumulation in skeletal muscle, enhanced muscular capacities for fat oxidation and mitochondria activity, signs of enhanced sirtuin 1 and AMP-dependent protein kinase signaling in muscle, and increased fat oxidation capacities and a decreased capacity for lipogenesis in liver compared with controls. Thus, RSV supplementation in early postnatal life may help preventing later diet-related disorders linked to ectopic lipid accumulation in muscle and liver tissues.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Resveratrol/farmacologia , Adenilato Quinase/genética , Adenilato Quinase/metabolismo , Animais , Animais Lactentes , Antioxidantes/farmacologia , Dieta Hiperlipídica , Suplementos Nutricionais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/crescimento & desenvolvimento , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Camundongos , Músculo Esquelético/crescimento & desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo
9.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1865(11): 158676, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32120014

RESUMO

Antiobesity activities of carotenoids and carotenoid conversion products (CCPs) have been demonstrated in pre-clinical studies, and mechanisms behind have begun to be unveiled, thus suggesting these compounds may help obesity prevention and management. The antiobesity action of carotenoids and CCPs can be traced to effects in multiple tissues, notably the adipose tissues. Key aspects of the biology of adipose tissues appear to be affected by carotenoid and CCPs, including adipogenesis, metabolic capacities for energy storage, release and inefficient oxidation, secretory function, and modulation of oxidative stress and inflammatory pathways. Here, we review the connections of carotenoids and CCPs with adipose tissue biology and obesity as revealed by cell and animal intervention studies, studies addressing the role of endogenous retinoid metabolism, and human epidemiological and intervention studies. We also consider human genetic variability influencing carotenoid and vitamin A metabolism, particularly in adipose tissues, as a potentially relevant aspect towards personalization of dietary recommendations to prevent or manage obesity and optimize metabolic health. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Carotenoides/uso terapêutico , Obesidade/dietoterapia , Estresse Oxidativo/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Dieta , Humanos , Obesidade/genética
10.
Nutrients ; 12(2)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059412

RESUMO

Neonatal supplementation with resveratrol (RSV) or nicotinamide riboside (NR) programs in male mice brown adipocyte-like features in white adipose tissue (WAT browning) together with improved metabolism in adulthood. We tested the involvement in this programming of long-term epigenetic changes in two browning-related genes that are overexpressed in WAT of supplemented mice, Slc27a1 and Prdm16. Suckling mice received orally the vehicle, RSV or NR from postnatal days 2-to-20. After weaning (d21) onto a chow diet, male mice were habituated to a normal-fat diet (NFD) starting d75, and split on d90 into continuation on the NFD or switching to a high-fat diet (HFD) until euthanization on d164. CpG methylation by bisulfite-sequencing was analyzed on inguinal WAT. Both treatments modified methylation marks in Slc27a1 and Prdm16 and the HFD-dependent dynamics of these marks in the adult WAT, with distinct and common effects. The treatments also affected gene expression of de novo DNA methylases in WAT of young animals (euthanized at d35 in independent experiments). Studies in 3T3-L1 adipocytes indicated the direct effects of RSV and NR on the DNA methylation machinery and favoring browning features. The results support epigenetic effects being involved in WAT programming by neonatal RSV or NR supplementation in male mice.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Fenômenos Fisiológicos da Nutrição Animal/genética , Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Metilação de DNA , Suplementos Nutricionais , Epigênese Genética , Niacinamida/análogos & derivados , Resveratrol/administração & dosagem , Resveratrol/farmacologia , Células 3T3-L1 , Administração Oral , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Metilação de DNA/efeitos dos fármacos , Masculino , Camundongos , Niacinamida/administração & dosagem , Niacinamida/farmacologia , Compostos de Piridínio
11.
Methods Mol Biol ; 2083: 403-417, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31745938

RESUMO

Carotenoids entail a vast potential to tackle health problems including obesity and some of its comorbidities. The use of animal models remains necessary, particularly at early stages of research (preclinical) and for advancing in mechanistic aspects of carotenoid action. No single animal model completely mimics human absorption and metabolism of carotenoids, and the best model must be chosen considering the specific application, characteristics of the individual models, and funding and facilities available. Here, we propose three protocols in mice to investigate the potential of a given carotenoid, carotenoid mixture, or carotenoid-rich extract to (a) counteract the development of obesity and prevent the metabolic alterations caused by feeding mice a moderate high-fat diet; (b) improve the metabolic profile of obese animals with metabolic alterations caused by chronic high-fat diet feeding; and (c) act as coadjuvants in weight loss strategies (reversion to a low fat diet) applied to diet-induced obese animals.


Assuntos
Fármacos Antiobesidade/farmacologia , Carotenoides/farmacologia , Animais , Fármacos Antiobesidade/química , Biomarcadores , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Carotenoides/química , Dieta , Modelos Animais de Doenças , Humanos , Resistência à Insulina , Masculino , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Camundongos , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo
12.
Int J Mol Sci ; 20(15)2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31349613

RESUMO

Treatment with all-trans retinoic acid (ATRA), the carboxylic form of vitamin A, lowers body weight in rodents by promoting oxidative metabolism in multiple tissues including white and brown adipose tissues. We aimed to identify novel markers of the metabolic impact of ATRA through targeted blood metabolomics analyses, with a focus on acylcarnitines and amino acids. Blood was obtained from mice treated with a high ATRA dose (50 mg/kg body weight/day, subcutaneous injection) or placebo (controls) during the 4 days preceding collection. LC-MS/MS analyses with a focus on acylcarnitines and amino acids were conducted on plasma and PBMC. Main results showed that, relative to controls, ATRA-treated mice had in plasma: increased levels of carnitine, acetylcarnitine, and longer acylcarnitine species; decreased levels of citrulline, and increased global arginine bioavailability ratio for nitric oxide synthesis; increased levels of creatine, taurine and docosahexaenoic acid; and a decreased n-6/n-3 polyunsaturated fatty acids ratio. While some of these features likely reflect the stimulation of lipid mobilization and oxidation promoted by ATRA treatment systemically, other may also play a causal role underlying ATRA actions. The results connect ATRA to specific nutrition-modulated biochemical pathways, and suggest novel mechanisms of action of vitamin A-derived retinoic acid on metabolic health.


Assuntos
Aminoácidos/sangue , Carnitina/análogos & derivados , Metaboloma/efeitos dos fármacos , Metabolômica , Tretinoína/farmacologia , Tecido Adiposo , Animais , Carnitina/sangue , Perfilação da Expressão Gênica , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Masculino , Metabolômica/métodos , Camundongos , Modelos Biológicos , Oxirredução/efeitos dos fármacos
13.
Nutrients ; 11(4)2019 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-30959933

RESUMO

Phaeodactylum tricornutum (P. tricornutum) comprise several lipophilic constituents with proposed anti-obesity and anti-diabetic properties. We investigated the effect of an ethanolic P. tricornutum extract (PTE) on energy metabolism in obesity-prone mice fed a high fat diet (HFD). Six- to eight-week-old male C57BL/6J mice were switched to HFD and, at the same time, received orally placebo or PTE (100 mg or 300 mg/kg body weight/day). Body weight, body composition, and food intake were monitored. After 26 days, blood and tissue samples were collected for biochemical, morphological, and gene expression analyses. PTE-supplemented mice accumulated fucoxanthin metabolites in adipose tissues and attained lower body weight gain, body fat content, weight of white adipose tissue (WAT) depots, and inguinal WAT adipocyte size than controls, independent of decreased food intake. PTE supplementation was associated with lower expression of Mest (a marker of fat tissue expandability) in WAT depots, lower gene expression related to lipid uptake and turnover in visceral WAT, increased expression of genes key to fatty acid oxidation and thermogenesis (Cpt1, Ucp1) in subcutaneous WAT, and signs of thermogenic activation including enhanced UCP1 protein in interscapular brown adipose tissue. In conclusion, these data show the potential of PTE to ameliorate HFD-induced obesity in vivo.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Microalgas/química , Obesidade/induzido quimicamente , Xantofilas/farmacologia , Células 3T3-L1 , Tecido Adiposo Marrom/efeitos dos fármacos , Ração Animal/análise , Animais , Glicemia , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/efeitos adversos , Suplementos Nutricionais , Ácidos Graxos não Esterificados/sangue , Regulação da Expressão Gênica/efeitos dos fármacos , Insulina/sangue , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Xantofilas/química
14.
Front Physiol ; 10: 83, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30800077

RESUMO

Nutritional programming of the thermogenic and fuel oxidation capacity of white adipose tissue (WAT) through dietary interventions in early life is a potential strategy to enhance future metabolic health. We previously showed that mild neonatal supplementations with the polyphenol resveratrol (RSV) and the vitamin B3 form nicotinamide riboside (NR) have sex-dependent, long-term effects on the thermogenic/oxidative phenotype of WAT of mice in adulthood, enhancing this phenotype selectively in male animals. Here, we tested the hypothesis that these dietary interventions may impact the commitment of progenitor cells resident in the developing WAT toward brown-like (beige) adipogenesis. NMRI mice received orally from postnatal day 2-20 (P2-20) a mild dose of RSV or NR, in independent experiments; control littermates received the vehicle. Sex-separated primary cultures were established at P35 from the stromovascular fraction of inguinal WAT (iWAT) and of brown adipose tissue (BAT). Expression of genes related to thermogenesis and oxidative metabolism was assessed in the differentiated cultures, and in vivo in the iWAT depot of young (P35) animals. Neonatal RSV and NR treatments had little impact on the animals' growth during early postnatal life and the expression of thermogenesis- and oxidative metabolism-related genes in the iWAT depot of young mice. However, the expression of brown/beige adipocyte marker genes was upregulated in the iWAT primary cultures from RSV supplemented and NR supplemented male mice, and downregulated in those from supplemented female mice, as compared to cultures derived from sex-matched control littermates. RSV supplementation had similar sex-dependent effects on the expression of thermogenesis-related genes in the BAT primary cultures. A link between the sex-dependent short-term effects of neonatal RSV and NR supplementations on primary iWAT preadipocyte differentiation observed herein and their previously reported sex-dependent long-term effects on the thermogenic/oxidative capacity of adult iWAT is suggested. The results provide proof-of-concept that the fate of preadipocytes resident in WAT of young animals toward the beige adipogenesis transcriptional program can be modulated by specific food bioactives/micronutrients received in early postnatal life.

15.
Mol Nutr Food Res ; 62(21): e1800463, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30095217

RESUMO

SCOPE: Resveratrol (RSV) and nicotinamide riboside (NR) are food compounds with anti-obesity actions in adult rodents. Here, the long-term effects of RSV and NR mild supplementation throughout lactation on adiposity-related parameters and the appearance of the beige phenotype in white adipose tissue (WAT) in adulthood are assessed. METHODS AND RESULTS: Newborn mice received orally RSV or NR from day 2 to 20 of life. Control littermates received the vehicle. All animals are weaned onto a chow diet on day 21. On day 90, half the animals of each group are assigned to a high-fat diet (HFD) for 10 weeks, while the other remained on a normal-fat diet. Energy-balance-related parameters, blood parameters, and gene expression and immunohistochemical analysis of WAT are assessed. Treated male mice show an improved response to the HFD, such as delayed body weight gain, a blunted increase in the plasma leptin/adiponectin ratio, and a decreased lipolytic response, together with signs of white-to-brown fat remodeling in inguinal WAT. These effects are absent in female mice. CONCLUSION: RSV and NR supplementations in early postnatal life affect WAT's thermogenic/oxidative transcriptional phenotype and metabolic responses in adulthood, with upregulatory and beneficial effects evidenced in male animals.


Assuntos
Tecido Adiposo Branco/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Niacinamida/análogos & derivados , Resveratrol/farmacologia , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Peso Corporal/efeitos dos fármacos , Suplementos Nutricionais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Lactação , Masculino , Camundongos Endogâmicos , Niacinamida/farmacologia , Fenótipo , Compostos de Piridínio , Termogênese/efeitos dos fármacos , Termogênese/genética
16.
Prog Lipid Res ; 70: 62-93, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29679619

RESUMO

Carotenoids are lipophilic isoprenoid compounds synthesized by all photosynthetic organisms and some non-photosynthetic prokaryotes and fungi. With some notable exceptions, animals (including humans) do not produce carotenoids de novo but take them in their diets. In photosynthetic systems carotenoids are essential for photoprotection against excess light and contribute to light harvesting, but perhaps they are best known for their properties as natural pigments in the yellow to red range. Carotenoids can be associated to fatty acids, sugars, proteins, or other compounds that can change their physical and chemical properties and influence their biological roles. Furthermore, oxidative cleavage of carotenoids produces smaller molecules such as apocarotenoids, some of which are important pigments and volatile (aroma) compounds. Enzymatic breakage of carotenoids can also produce biologically active molecules in both plants (hormones, retrograde signals) and animals (retinoids). Both carotenoids and their enzymatic cleavage products are associated with other processes positively impacting human health. Carotenoids are widely used in the industry as food ingredients, feed additives, and supplements. This review, contributed by scientists of complementary disciplines related to carotenoid research, covers recent advances and provides a perspective on future directions on the subjects of carotenoid metabolism, biotechnology, and nutritional and health benefits.


Assuntos
Biotecnologia , Carotenoides/metabolismo , Saúde , Ciências da Nutrição , Animais , Produtos Agrícolas , Humanos
17.
Cell Physiol Biochem ; 46(1): 187-202, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29587291

RESUMO

BACKGROUND/AIMS: All-trans retinoic acid (ATRA) has protective effects against obesity and metabolic syndrome. We here aimed to gain further insight into the interaction of ATRA with skeletal muscle metabolism and secretory activity as important players in metabolic health. METHODS: Cultured murine C2C12 myocytes were used to study direct effects of ATRA on cellular fatty acid oxidation (FAO) rate (using radioactively-labelled palmitate), glucose uptake (using radioactively-labelled 2-deoxy-D-glucose), triacylglycerol levels (by an enzymatic method), and the expression of genes related to FAO and glucose utilization (by RT-real time PCR). We also studied selected myokine production (using ELISA and immunohistochemistry) in ATRA-treated myocytes and intact mice. RESULTS: Exposure of C2C12 myocytes to ATRA led to increased fatty acid consumption and decreased cellular triacylglycerol levels without affecting glucose uptake, and induced the expression of the myokine irisin at the mRNA and secreted protein level in a dose-response manner. ATRA stimulatory effects on FAO-related genes and the Fndc5 gene (encoding irisin) were reproduced by agonists of peroxisome proliferator-activated receptor ß/δ and retinoid X receptors, but not of retinoic acid receptors, and were partially blocked by an AMP-dependent protein kinase inhibitor. Circulating irisin levels were increased by 5-fold in ATRA-treated mice, linked to increased Fndc5 transcription in liver and adipose tissues, rather than skeletal muscle. Immunohistochemistry analysis of FNDC5 suggested that ATRA treatment enhances the release of FNDC5/irisin from skeletal muscle and the liver and its accumulation in interscapular brown and inguinal white adipose depots. CONCLUSION: These results provide new mechanistic insights on how ATRA globally stimulates FAO and enhances irisin secretion, thereby contributing to leaning effects and improved metabolic status.


Assuntos
Fibronectinas/metabolismo , Tretinoína/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Ácidos Graxos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Fibronectinas/sangue , Fibronectinas/genética , Glucose/metabolismo , Interleucina-6/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Neuropeptídeos/análise , Neuropeptídeos/metabolismo , PPAR delta/agonistas , PPAR delta/metabolismo , PPAR beta/agonistas , PPAR beta/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Receptores X de Retinoides/agonistas , Receptores X de Retinoides/metabolismo , Triglicerídeos/metabolismo
18.
Biomed Pharmacother ; 101: 501-509, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29501772

RESUMO

The Mediterranean buckthorn, Rhamnus alaternus L., is a plant used in traditional medicine in Mediterranean countries. We aimed at characterizing its phenolic compounds and explore potential antihyperlipidemic activity of this plant. The profile of phenolic compounds in R. alaternus leaf crude methanolic extract (CME) and its liquid-liquid extraction-derived fractions were analyzed by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ESI-MS2). Effects of CME on: circulating lipids in rats with Triton WR-1339-induced hyperlipidemia, intracellular lipid accumulation and expression of genes of fatty acid metabolism in human hepatoma HepG2 cells, and adipogenesis in the 3T3-L1 murine adipocyte cell model were assessed. The HPLC/ESI-MS2 analytical profile revealed a total of fifteen compounds, of which eleven were identified. Oral CME administration decreased blood levels of cholesterol and triacylglycerols in hyperlipidemic rats (by 60% and 70%, respectively, at 200 mg CME/kg). In HepG2 cells, CME exposure dose-dependently decreased intracellular lipids and up-regulated gene expression of carnitine palmitoyltransferase 1 involved in fatty acid oxidation. In the 3T3-L1 model, CME favored preadipocyte proliferation and adipogenesis, pointing to positive effects on adipose tissue expandability. These results suggest novel uses of R. alaternus by showing that its leaves are rich in flavonoids and flavonoid derivatives with an antihyperlipidemic effect in vivo and in hepatic cells.


Assuntos
Hiperlipidemias/tratamento farmacológico , Hipolipemiantes/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta/química , Rhamnus/química , Células 3T3 , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Colesterol/metabolismo , Feminino , Flavonoides/farmacologia , Células Hep G2 , Humanos , Hiperlipidemias/metabolismo , Masculino , Medicina Tradicional/métodos , Camundongos , Ratos , Ratos Wistar , Triglicerídeos/metabolismo
19.
Cell Physiol Biochem ; 42(2): 564-578, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28578347

RESUMO

BACKGROUND/AIMS: The aim of this study was to gain more insight into the beneficial effects of mango fruit powder on the early metabolic adverse effects of a high-fat diet. METHODS: The progressive dose-response effects of mango fruit powder on body composition, circulating parameters, and the expression of genes related to fatty acid oxidation and insulin sensitivity in key tissues were studied in mice fed a moderate (45%) high-fat diet. RESULTS: Findings suggest that mango fruit powder exerts physiological protective effects in the initial steps of insulin resistance and hepatic lipid accumulation induced by a high-fat diet in mice. Moreover, AMPK and SIRT1 appear as key regulators of the observed improvement in fatty acid oxidation capacity, as well as of the improved insulin sensitivity and the increased glucose uptake and metabolism through the glycolytic pathway capacity in liver and skeletal muscle. CONCLUSION: In summary, this study provides evidence that the functional food ingredient (CarelessTM) from mango fruit prevents early metabolic alterations caused by a high-fat diet in the initial stages of the metabolic syndrome.


Assuntos
Frutas/química , Resistência à Insulina , Mangifera/química , Obesidade/dietoterapia , Pós/administração & dosagem , Animais , Glicemia/efeitos dos fármacos , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Humanos , Insulina/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Camundongos , Obesidade/metabolismo , Obesidade/patologia , Oxirredução , Pós/química , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/química
20.
Subcell Biochem ; 79: 377-414, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27485231

RESUMO

Cell, animal and human studies dealing with carotenoids and carotenoid derivatives as nutritional regulators of adipose tissue biology with implications for the etiology and management of obesity and obesity-related metabolic diseases are reviewed. Most studied carotenoids in this context are ß-carotene, cryptoxanthin, astaxanthin and fucoxanthin, together with ß-carotene-derived retinoids and some other apocarotenoids. Studies indicate an impact of these compounds on essential aspects of adipose tissue biology including the control of adipocyte differentiation (adipogenesis), adipocyte metabolism, oxidative stress and the production of adipose tissue-derived regulatory signals and inflammatory mediators. Specific carotenoids and carotenoid derivatives restrain adipogenesis and adipocyte hypertrophy while enhancing fat oxidation and energy dissipation in brown and white adipocytes, and counteract obesity in animal models. Intake, blood levels and adipocyte content of carotenoids are reduced in human obesity. Specifically designed human intervention studies in the field, though still sparse, indicate a beneficial effect of carotenoid supplementation in the accrual of abdominal adiposity. In summary, studies support a role of specific carotenoids and carotenoid derivatives in the prevention of excess adiposity, and suggest that carotenoid requirements may be dependent on body composition.


Assuntos
Tecido Adiposo/metabolismo , Carotenoides/metabolismo , Obesidade/metabolismo , beta Caroteno/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/patologia , Animais , Carotenoides/uso terapêutico , Criptoxantinas/metabolismo , Humanos , Obesidade/dietoterapia , Obesidade/patologia , Xantofilas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...