Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 125(23): 237602, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33337169

RESUMO

We combine the anisotropy of magnetic interactions and the point symmetry of finite solids in the study of dipolar clusters as new basic units for multiferroics metamaterials. The Hamiltonian of magnetic dipoles with an easy axis at the vertices of polygons and polyhedra, maps exactly into a Hamiltonian with symmetric and antisymmetric exchange couplings. The last one gives rise to a Dzyaloshinskii-Moriya contribution responsible for the magnetic modes of the systems and their symmetry groups, which coincide with those of a particle in a crystal field with spin-orbit interaction. We find that the clusters carry spin current and that they manifest the magnetoelectric effect. We expect our results to pave the way for the rational design of magnetoelectric devices at room temperature.

2.
Sci Rep ; 10(1): 18338, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110192

RESUMO

We study the dynamics of three populations evolving in a two-dimensional discrete grid according to rules of attraction, rejection, or indifference following the framework of the seminal model by Sakoda and we apply it to migration phenomena. An interesting feature of the Sakoda model is the existence of a Potts-like energy which, as a common principle, decreases as time passes by. Here we consider the evolution of two populations until stabilization, then, we perturb this attractor by the inclusion of a third arrival: the immigrants. We show the conditions under which this irruption does not alter significantly the previous attractor (a sociological morphostatic behaviour) or it is dramatically changed (morphogenetic behaviour). We observe empirically that for a morphostatic behaviour the energy decreases while for morphogenesis this energy increases, revealing an escalation of social tension.


Assuntos
Migração Humana , Modelos Psicológicos , Evolução Social , Interação Social , Emigrantes e Imigrantes/psicologia , Emigrantes e Imigrantes/estatística & dados numéricos , Migração Humana/estatística & dados numéricos , Humanos , Modelos Estatísticos , Comportamento Social , Inclusão Social
3.
Chaos ; 30(7): 073129, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32752607

RESUMO

We analyze the 2019 Chilean social unrest episode, consisting of a sequence of events, through the lens of an epidemic-like model that considers global contagious dynamics. We adjust the parameters to the Chilean social unrest aggregated public data available from the Undersecretary of Human Rights and observe that the number of violent events follows a well-defined pattern already observed in various public disorder episodes in other countries since the 1960s. Although the epidemic-like models display a single event that reaches a peak followed by an exponential decay, we add standard perturbation schemes that may produce a rich temporal behavior as observed in the 2019 Chilean social turmoil. Although we only have access to aggregated data, we are still able to fit it to our model quite well, providing interesting insights on social unrest dynamics.

4.
Opt Express ; 27(11): 16395-16404, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31163817

RESUMO

We show, both experimentally and theoretically, that the loss of coherence of a long cavity optical coherence tomography (OCT) laser can be described as a transition from laminar to turbulent flows. We demonstrate that in this strongly dissipative system, the transition happens either via an absolute or a convective instability depending on the laser parameters. In the latter case, the transition occurs via formation of localised structures in the laminar regime, which trigger the formation of growing and drifting puffs of turbulence. Experimentally, we demonstrate that these turbulent bursts are seeded by appearance of Nozaki-Bekki holes, characterised by the zero field amplitude and π phase jumps. Our experimental results are supported with numerical simulations based on the delay differential equations model.

5.
Philos Trans A Math Phys Eng Sci ; 376(2135)2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420549

RESUMO

We provide numerical solutions based on the path integral representation of stochastic processes for non-gradient drift Langevin forces in the presence of noise, to follow the temporal evolution of the probability density function and to compute exit times even for arbitrary noise. We compare the results with theoretical calculations, obtaining excellent agreement in the weak noise limit.This article is part of the theme issue 'Dissipative structures in matter out of equilibrium: from chemistry, photonics and biology (part 2)'.

6.
Phys Rev E ; 95(1-1): 013002, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28208390

RESUMO

Origami folded cylinders (origami bellows) have found increasingly sophisticated applications in space flight and medicine. In spite of this interest, a general understanding of the mechanics of an origami folded cylinder has been elusive. With a newly developed set of geometrical tools, we have found an analytic solution for all possible cylindrical rigid-face states of both Miura-ori and triangular tessellations. Although an idealized bellows in both of these families may have two allowed rigid-face configurations over a well-defined region, the corresponding physical device, limited by nonzero material thickness and forced to balance hinge and plate-bending energy, often cannot stably maintain a stowed configuration. We have identified the parameters that control this emergent bistability, and we have demonstrated the ability to design and fabricate bellows with tunable deployability.

7.
Phys Rev E ; 94(6-1): 062140, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28085343

RESUMO

A master equation approach is applied to a reversible and conservative cellular automaton model (Q2R). The Q2R model is a dynamical variation of the Ising model for ferromagnetism that possesses quite a rich and complex dynamics. The configuration space is composed of a huge number of cycles with exponentially long periods. Following Nicolis and Nicolis [G. Nicolis and C. Nicolis, Phys. Rev. A 38, 427 (1988)0556-279110.1103/PhysRevA.38.427], a coarse-graining approach is applied to the time series of the total magnetization, leading to a master equation that governs the macroscopic irreversible dynamics of the Q2R automata. The methodology is replicated for various lattice sizes. In the case of small systems, we show that the master equation leads to a tractable probability transfer matrix of moderate size, which provides a master equation for a coarse-grained probability distribution. The method is validated and some explicit examples are discussed.

8.
Artigo em Inglês | MEDLINE | ID: mdl-26066238

RESUMO

The dynamics of random weakly nonlinear waves is studied in the framework of vibrating thin elastic plates. Although it has been previously predicted that no stationary inverse cascade of constant wave action flux could exist in the framework of wave turbulence for elastic plates, we present substantial evidence of the existence of a time-dependent inverse cascade, opening up the possibility of self-organization for a larger class of systems. This inverse cascade transports the spectral density of the amplitude of the waves from short up to large scales, increasing the distribution of long waves despite the short-wave fluctuations. This dynamics appears to be self-similar and possesses a power-law behavior in the short-wavelength limit which significantly differs from the exponent obtained via a Kolmogorov dimensional analysis argument. Finally, we show explicitly a tendency to build a long-wave coherent structure in finite time.

9.
Phys Rev Lett ; 109(4): 045301, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-23006094

RESUMO

We investigate theoretically and numerically a model of a supersolid in a dipole-blockaded Bose-Einstein condensate. The dependence of the superfluid fraction with an imposed thermal bath and a uniform boost velocity on the condensate is considered. Specifically, we observe a critical velocity for the nucleation of vortices in our system that is strongly linked to a steplike decrease in the superfluid fraction. We are able to use a scaling argument based on the energy required to activate a vortex, relating the critical temperature to the critical velocity, and find that this relationship is in good agreement with the numerical simulations carried out on the nonlocal Gross-Pitaevskii equation.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(5 Pt 2): 056111, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21728609

RESUMO

In this paper we consider the Schelling social segregation model for two different populations. In Schelling's model, segregation appears as a consequence of discrimination, measured by the local difference between two populations. For that, the model defines a tolerance criterion on the neighborhood of an individual, indicating wether the individual is able to move to a new place or not. Next, the model chooses which of the available unhappy individuals really moves. In our work, we study the patterns generated by the dynamical evolution of the Schelling model in terms of various parameters or the initial condition, such as the size of the neighborhood of an inhabitant, the tolerance, and the initial number of individuals. As a general rule we observe that segregation patterns minimize the interface of zones of different people. In this context we introduce an energy functional associated with the configuration which is a strictly decreasing function for the tolerant people case. Moreover, as far as we know, we are the first to notice that in the case of a non-strictly-decreasing energy functional, the system may segregate very efficiently.

11.
Phys Rev Lett ; 102(2): 025301, 2009 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-19257286

RESUMO

We investigate the behavior of impurity fields immersed in a larger condensate field in various dimensions. We discuss the localization of a single impurity field within a condensate and note the effects of surface energy. We derive the functional form of the attractive condensate-mediated interaction between two impurities. Generalizing the analysis to N impurity fields, we show that within various parameter regimes a crystal of impurity fields can form spontaneously in the condensate. Finally, the system of condensate and crystallized impurity structure is shown to have nonclassical rotational inertia, which is characteristic of superfluidity; i.e., the system can be seen to exhibit supersolid behavior.

12.
Phys Rev Lett ; 98(19): 195301, 2007 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-17677624

RESUMO

The mechanical behavior of a supersolid is studied in the framework of a fully explicit model derived from the Gross-Pitaevskii equation without assuming any defect or vacancy. A set of coupled nonlinear partial differential equations plus boundary conditions is derived. The conditions of mechanical equilibrium are studied under external constraints such as steady rotation and external stress. Our model explains the experimentally observed paradoxical behavior: a nonclassical rotational inertia fraction in the limit of small rotation speed but a solidlike elastic response to small stress or an external force field.

13.
Phys Rev Lett ; 97(2): 025503, 2006 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-16907456

RESUMO

We study the long-time evolution of waves of a thin elastic plate in the limit of small deformation so that modes of oscillations interact weakly. According to the theory of weak turbulence (successfully applied in the past to plasma, optics, and hydrodynamic waves), this nonlinear wave system evolves at long times with a slow transfer of energy from one mode to another. We derive a kinetic equation for the spectral transfer in terms of the second order moment. We show that such a theory describes the approach to an equilibrium wave spectrum and represents also an energy cascade, often called the Kolmogorov-Zakharov spectrum. We perform numerical simulations that confirm this scenario.

14.
Phys Rev Lett ; 95(26): 263901, 2005 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-16486353

RESUMO

We study the formation of a large-scale coherent structure (a condensate) in classical wave equations by considering the defocusing nonlinear Schrödinger equation as a representative model. We formulate a thermodynamic description of the classical condensation process by using a wave turbulence theory with ultraviolet cutoff. In three dimensions the equilibrium state undergoes a phase transition for sufficiently low energy density, while no transition occurs in two dimensions, in complete analogy with standard Bose-Einstein condensation in quantum systems. On the basis of a modified wave turbulence theory, we show that the nonlinear interaction makes the transition to condensation subcritical. The theory is in quantitative agreement with the numerical integration of the nonlinear Schrödinger equation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA