Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1201, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331917

RESUMO

Chemokine heterodimers activate or dampen their cognate receptors during inflammation. The CXCL12 chemokine forms with the fully reduced (fr) alarmin HMGB1 a physiologically relevant heterocomplex (frHMGB1•CXCL12) that synergically promotes the inflammatory response elicited by the G-protein coupled receptor CXCR4. The molecular details of complex formation were still elusive. Here we show by an integrated structural approach that frHMGB1•CXCL12 is a fuzzy heterocomplex. Unlike previous assumptions, frHMGB1 and CXCL12 form a dynamic equimolar assembly, with structured and unstructured frHMGB1 regions recognizing the CXCL12 dimerization surface. We uncover an unexpected role of the acidic intrinsically disordered region (IDR) of HMGB1 in heterocomplex formation and its binding to CXCR4 on the cell surface. Our work shows that the interaction of frHMGB1 with CXCL12 diverges from the classical rigid heterophilic chemokines dimerization. Simultaneous interference with multiple interactions within frHMGB1•CXCL12 might offer pharmacological strategies against inflammatory conditions.


Assuntos
Quimiocina CXCL12 , Proteína HMGB1 , Humanos , Quimiocina CXCL12/metabolismo , Proteína HMGB1/metabolismo , Receptores CXCR4/metabolismo , Inflamação , Transdução de Sinais
2.
J Vet Intern Med ; 38(1): 205-215, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37991136

RESUMO

BACKGROUND: Amyloid A (AA) amyloidosis is a protein misfolding disease arising from serum amyloid A (SAA). Systemic AA amyloidosis recently was shown to have a high prevalence in shelter cats in Italy and was associated with azotemia and proteinuria. OBJECTIVES: Investigate urine protein profiles and diagnostic biomarkers in cats with renal AA amyloidosis. ANIMALS: Twenty-nine shelter cats. METHODS: Case-control study. Cats with renal proteinuria that died or were euthanized between 2018 and 2021 with available necropsy kidney, liver and spleen samples, and with surplus urine collected within 30 days before death, were included. Histology was used to characterize renal damage and amyloid amount and distribution; immunohistochemistry was used to confirm AA amyloidosis. Urine protein-to-creatinine (UPC) and urine amyloid A-to-creatinine (UAAC) ratios were calculated, and sodium dodecyl sulfate-agarose gel electrophoresis (SDS-AGE) and liquid chromatography-mass spectrometry (LC-MS) of proteins were performed. RESULTS: Twenty-nine cats were included. Nineteen had AA amyloidosis with renal involvement. Cats with AA amyloidosis had a higher UPC (median, 3.9; range, 0.6-12.7 vs 1.5; 0.6-3.1; P = .03) and UAAC ratios (median, 7.18 × 10-3 ; range, 23 × 10-3 -21.29 × 10-3 vs 1.26 × 10-3 ; 0.21 × 10-3 -6.33 × 10-3 ; P = .04) than unaffected cats. The SDS-AGE identified mixed-type proteinuria in 89.4% of cats with AA amyloidosis and in 55.6% without AA amyloidosis (P = .57). The LC-MS identified 63 potential biomarkers associated with AA amyloidosis (P < .05). Among these, urine apolipoprotein C-III was higher in cats with AA amyloidosis (median, 1.38 × 107 ; range, 1.85 × 105 -5.29 × 107 vs 1.76 × 106 ; 0.0 × 100 -1.38 × 107 ; P = .01). In the kidney, AA-amyloidosis was associated with glomerulosclerosis (P = .02) and interstitial fibrosis (P = .05). CONCLUSIONS AND CLINICAL IMPORTANCE: Renal AA amyloidosis is associated with kidney lesions, increased proteinuria and increased urine excretion of SAA in shelter cats. Additional studies are needed to characterize the role of lipid transport proteins in the urine of affected cats.


Assuntos
Amiloidose , Doenças do Gato , Gatos , Animais , Creatinina , Estudos de Casos e Controles , Rim/patologia , Amiloidose/complicações , Amiloidose/veterinária , Proteinúria/veterinária , Proteinúria/metabolismo , Proteína Amiloide A Sérica/metabolismo , Doenças do Gato/patologia
3.
PLoS One ; 18(11): e0293892, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37917747

RESUMO

Amyloidosis is a group of protein-misfolding disorders characterized by the accumulation of amyloid in organs, both in humans and animals. AA-amyloidosis is considered a reactive type of amyloidosis and in humans is characterized by the deposition of AA-amyloid fibrils in one or more organs. In domestic shorthair cats, AA-amyloidosis was recently reported to be frequent in shelters. To better characterize this pathology, we report the distribution of amyloid deposits and associated histological lesions in the organs of shelter cats with systemic AA-amyloidosis. AA-amyloid deposits were identified with Congo Red staining and immunofluorescence. AA-amyloid deposits were then described and scored, and associated histological lesions were reported. Based on Congo Red staining and immunofluorescence nine shelter cats presented systemic AA-amyloidosis. The kidney (9/9), the spleen (8/8), the adrenal glands (8/8), the small intestine (7/7) and the liver (8/9) were the organs most involved by amyloid deposits, with multifocal to diffuse and from moderate to severe deposits, both in the organ parenchyma and/or in the vascular compartment. The lung (2/9) and the skin (1/8) were the least frequently involved organs and deposits were mainly focal to multifocal, mild, vascular and perivascular. Interestingly, among the organs with fibril deposition, the stomach (7/9), the gallbladder (6/6), the urinary bladder (3/9), and the heart (6/7) were reported for the first time in cats. All eye, brain and skeletal muscle samples had no amyloid deposits. An inflammatory condition was identified in 8/9 cats, with chronic enteritis and chronic nephritis being the most common. Except for secondary cell compression, other lesions were not associated to amyloid deposits. To conclude, this study gives new insights into the distribution of AA-amyloid deposits in cats. A concurrent chronic inflammation was present in almost all cases, possibly suggesting a relationship with AA-amyloidosis.


Assuntos
Amiloidose , Amiloidose de Cadeia Leve de Imunoglobulina , Humanos , Gatos , Animais , Placa Amiloide/complicações , Vermelho Congo , Amiloidose/patologia , Amiloidose de Cadeia Leve de Imunoglobulina/complicações , Amiloide , Proteína Amiloide A Sérica , Proteínas Amiloidogênicas
4.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894777

RESUMO

Brugada Syndrome (BrS) is a rare inherited cardiac arrhythmia causing potentially fatal ventricular tachycardia or fibrillation, mainly occurring during rest or sleep in young individuals without heart structural issues. It increases the risk of sudden cardiac death, and its characteristic feature is an abnormal ST segment elevation on the ECG. While BrS has diverse genetic origins, a subset of cases can be conducted to mutations in the SCN5A gene, which encodes for the Nav1.5 sodium channel. Our study focused on three novel SCN5A mutations (p.A344S, p.N347K, and p.D349N) found in unrelated BrS families. Using patch clamp experiments, we found that these mutations disrupted sodium currents: p.A344S reduced current density, while p.N347K and p.D349N completely abolished it, leading to altered voltage dependence and inactivation kinetics when co-expressed with normal channels. We also explored the effects of mexiletine treatment, which can modulate ion channel function. Interestingly, the p.N347K and p.D349N mutations responded well to the treatment, rescuing the current density, while p.A344S showed a limited response. Structural analysis revealed these mutations were positioned in key regions of the channel, impacting its stability and function. This research deepens our understanding of BrS by uncovering the complex relationship between genetic mutations, ion channel behavior, and potential therapeutic interventions.


Assuntos
Síndrome de Brugada , Humanos , Síndrome de Brugada/genética , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Arritmias Cardíacas , Mutação
5.
J Mol Biol ; 435(24): 168320, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37865287

RESUMO

Light chain amyloidosis (AL) is a systemic disease where fibrillar deposition of misfolded immunoglobulin light chains (LCs) severely affects organ function and results in poor prognosis for patients, especially when heart involvement is severe. Particularly relevant in this context is the cardiotoxicity exerted by still uncharacterized soluble LC species. Here, with the final goal of identifying alternative therapeutic strategies to tackle AL amyloidosis, we produced five llama-derived nanobodies (Nbs) specific against H3, a well-characterized amyloidogenic and cardiotoxic LC from an AL patient with severe cardiac involvement. We found that Nbs are specific and potent agents capable of abolishing H3 soluble toxicity in C. elegans in vivo model. Structural characterization of H3-Nb complexes revealed that the protective effect of Nbs is related to their ability to bind to the H3 VL domain and stabilise an unexpected partially open LC dimer in which the two VL domains no longer interact with each other. Thus, while identifying potent inhibitors of LC soluble toxicity, we also describe the first non-native structure of an amyloidogenic LC that may represent a crucial step in toxicity and aggregation mechanisms.


Assuntos
Amiloide , Cadeias Leves de Imunoglobulina , Amiloidose de Cadeia Leve de Imunoglobulina , Anticorpos de Domínio Único , Animais , Humanos , Amiloide/imunologia , Caenorhabditis elegans , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/imunologia , Cadeias Leves de Imunoglobulina/uso terapêutico , Miócitos Cardíacos/metabolismo , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/uso terapêutico , Amiloidose de Cadeia Leve de Imunoglobulina/imunologia , Amiloidose de Cadeia Leve de Imunoglobulina/terapia
6.
J Mol Biol ; 435(18): 168215, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37516426

RESUMO

Immunoglobulin light chain amyloidosis (AL) is caused by the aberrant production of amyloidogenic light chains (LC) that accumulate as amyloid deposits in vital organs. Distinct LC sequences in each patient yield distinct amyloid structures. However different tissue microenvironments may also cause identical protein precursors to adopt distinct amyloid structures. To address the impact of the tissue environment on the structural polymorphism of amyloids, we extracted fibrils from the kidney of an AL patient (AL55) whose cardiac amyloid structure was previously determined by our group. Here we show that the 4.0 Å resolution cryo-EM structure of the renal fibril is virtually identical to that reported for the cardiac fibril. These results provide the first structural evidence that LC amyloids independently deposited in different organs of the same AL patient share a common fold.


Assuntos
Amiloide , Amiloidose de Cadeia Leve de Imunoglobulina , Humanos , Amiloide/química , Microscopia Crioeletrônica/métodos , Amiloidose de Cadeia Leve de Imunoglobulina/metabolismo , Rim/metabolismo , Microambiente Tumoral
7.
J Exp Med ; 220(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37347462

RESUMO

Mosquito-borne West Nile virus (WNV) infection is benign in most individuals but can cause encephalitis in <1% of infected individuals. We show that ∼35% of patients hospitalized for WNV disease (WNVD) in six independent cohorts from the EU and USA carry auto-Abs neutralizing IFN-α and/or -ω. The prevalence of these antibodies is highest in patients with encephalitis (∼40%), and that in individuals with silent WNV infection is as low as that in the general population. The odds ratios for WNVD in individuals with these auto-Abs relative to those without them in the general population range from 19.0 (95% CI 15.0-24.0, P value <10-15) for auto-Abs neutralizing only 100 pg/ml IFN-α and/or IFN-ω to 127.4 (CI 87.1-186.4, P value <10-15) for auto-Abs neutralizing both IFN-α and IFN-ω at a concentration of 10 ng/ml. These antibodies block the protective effect of IFN-α in Vero cells infected with WNV in vitro. Auto-Abs neutralizing IFN-α and/or IFN-ω underlie ∼40% of cases of WNV encephalitis.


Assuntos
Interferon Tipo I , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Chlorocebus aethiops , Humanos , Células Vero , Autoanticorpos , Anticorpos Antivirais , Interferon-alfa
8.
PLoS One ; 18(3): e0281822, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36989207

RESUMO

Systemic AA-amyloidosis is a protein-misfolding disease characterized by fibril deposition of serum amyloid-A protein (SAA) in several organs in humans and many animal species. Fibril deposits originate from abnormally high serum levels of SAA during chronic inflammation. A high prevalence of AA-amyloidosis has been reported in captive cheetahs and a horizontal transmission has been proposed. In domestic cats, AA-amyloidosis has been mainly described in predisposed breeds but only rarely reported in domestic short-hair cats. Aims of the study were to determine AA-amyloidosis prevalence in dead shelter cats. Liver, kidney, spleen and bile were collected at death in cats from 3 shelters. AA-amyloidosis was scored. Shedding of amyloid fibrils was investigated with western blot in bile and scored. Descriptive statistics were calculated. In the three shelters investigated, prevalence of AA-amyloidosis was 57.1% (16/28 cats), 73.0% (19/26) and 52.0% (13/25), respectively. In 72.9% of cats (35 in total) three organs were affected concurrently. Histopathology and immunofluorescence of post-mortem extracted deposits identified SAA as the major protein source. The duration of stay in the shelters was positively associated with a histological score of AA-amyloidosis (B = 0.026, CI95% = 0.007-0.046; p = 0.010). AA-amyloidosis was very frequent in shelter cats. Presence of SAA fragments in bile secretions raises the possibility of fecal-oral transmission of the disease. In conclusion, AA-amyloidosis was very frequent in shelter cats and those staying longer had more deposits. The cat may represent a natural model of AA-amyloidosis.


Assuntos
Acinonyx , Amiloidose , Amiloidose de Cadeia Leve de Imunoglobulina , Humanos , Gatos , Animais , Amiloidose/epidemiologia , Amiloidose/veterinária , Amiloide , Proteína Amiloide A Sérica/metabolismo
9.
Nat Commun ; 14(1): 239, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646699

RESUMO

hnRNPDL is a ribonucleoprotein (RNP) involved in transcription and RNA-processing that hosts missense mutations causing limb-girdle muscular dystrophy D3 (LGMD D3). Mammalian-specific alternative splicing (AS) renders three natural isoforms, hnRNPDL-2 being predominant in humans. We present the cryo-electron microscopy structure of full-length hnRNPDL-2 amyloid fibrils, which are stable, non-toxic, and bind nucleic acids. The high-resolution amyloid core consists of a single Gly/Tyr-rich and highly hydrophilic filament containing internal water channels. The RNA binding domains are located as a solenoidal coat around the core. The architecture and activity of hnRNPDL-2 fibrils are reminiscent of functional amyloids, our results suggesting that LGMD D3 might be a loss-of-function disease associated with impaired fibrillation. Strikingly, the fibril core matches exon 6, absent in the soluble hnRNPDL-3 isoform. This provides structural evidence for AS controlling hnRNPDL assembly by precisely including/skipping an amyloid exon, a mechanism that holds the potential to generate functional diversity in RNPs.


Assuntos
Amiloide , Distrofia Muscular do Cíngulo dos Membros , Ribonucleoproteínas , Humanos , Processamento Alternativo , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Microscopia Crioeletrônica , Distrofia Muscular do Cíngulo dos Membros/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ribonucleoproteínas/metabolismo
10.
Nat Commun ; 13(1): 7041, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36396658

RESUMO

AA amyloidosis is a systemic disease characterized by deposition of misfolded serum amyloid A protein (SAA) into cross-ß amyloid in multiple organs in humans and animals. AA amyloidosis occurs at high SAA serum levels during chronic inflammation. Prion-like transmission was reported as possible cause of extreme AA amyloidosis prevalence in captive animals, e.g. 70% in cheetah and 57-73% in domestic short hair (DSH) cats kept in zoos and shelters, respectively. Herein, we present the 3.3 Å cryo-EM structure of AA amyloid extracted post-mortem from the kidney of a DSH cat with renal failure, deceased in a shelter with extreme disease prevalence. The structure reveals a cross-ß architecture assembled from two 76-residue long proto-filaments. Despite >70% sequence homology to mouse and human SAA, the cat SAA variant adopts a distinct amyloid fold. Inclusion of an eight-residue insert unique to feline SAA contributes to increased amyloid stability. The presented feline AA amyloid structure is fully compatible with the 99% identical amino acid sequence of amyloid fragments of captive cheetah.


Assuntos
Acinonyx , Amiloidose , Animais , Gatos , Camundongos , Acinonyx/metabolismo , Amiloide/metabolismo , Amiloidose/metabolismo , Microscopia Crioeletrônica , Prevalência , Proteína Amiloide A Sérica/metabolismo
11.
Sci Adv ; 8(45): eabp9540, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36367941

RESUMO

De novo design methods hold the promise of reducing the time and cost of antibody discovery while enabling the facile and precise targeting of predetermined epitopes. Here, we describe a fragment-based method for the combinatorial design of antibody binding loops and their grafting onto antibody scaffolds. We designed and tested six single-domain antibodies targeting different epitopes on three antigens, including the receptor-binding domain of the SARS-CoV-2 spike protein. Biophysical characterization showed that all designs are stable and bind their intended targets with affinities in the nanomolar range without in vitro affinity maturation. We further discuss how a high-resolution input antigen structure is not required, as similar predictions are obtained when the input is a crystal structure or a computer-generated model. This computational procedure, which readily runs on a laptop, provides a starting point for the rapid generation of lead antibodies binding to preselected epitopes.


Assuntos
Anticorpos Monoclonais , COVID-19 , Humanos , Epitopos , Afinidade de Anticorpos , Anticorpos Monoclonais/química , Modelos Moleculares , SARS-CoV-2 , Antígenos
13.
Proc Natl Acad Sci U S A ; 119(26): e2203181119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35737839

RESUMO

Protein aggregation into amyloid fibrils is the archetype of aberrant biomolecular self-assembly processes, with more than 50 associated diseases that are mostly uncurable. Understanding aggregation mechanisms is thus of fundamental importance and goes in parallel with the structural characterization of the transient oligomers formed during the process. Oligomers have been proven elusive to high-resolution structural techniques, while the large sizes and long time scales, typical of aggregation processes, have limited the use of computational methods to date. To surmount these limitations, we here present multi-eGO, an atomistic, hybrid structure-based model which, leveraging the knowledge of monomers conformational dynamics and of fibril structures, efficiently captures the essential structural and kinetics aspects of protein aggregation. Multi-eGO molecular dynamics simulations can describe the aggregation kinetics of thousands of monomers. The concentration dependence of the simulated kinetics, as well as the structural features of the resulting fibrils, are in qualitative agreement with in vitro experiments carried out on an amyloidogenic peptide from Transthyretin, a protein responsible for one of the most common cardiac amyloidoses. Multi-eGO simulations allow the formation of primary nuclei in a sea of transient lower-order oligomers to be observed over time and at atomic resolution, following their growth and the subsequent secondary nucleation events, until the maturation of multiple fibrils is achieved. Multi-eGO, combined with the many experimental techniques deployed to study protein aggregation, can provide the structural basis needed to advance the design of molecules targeting amyloidogenic diseases.


Assuntos
Amiloide , Agregados Proteicos , Amiloide/química , Simulação por Computador , Cinética , Simulação de Dinâmica Molecular
14.
Leukemia ; 36(8): 2076-2085, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35610346

RESUMO

Immunoglobulin light chain (AL) amyloidosis is caused by a small, minimally proliferating B-cell/plasma-cell clone secreting a patient-unique, aggregation-prone, toxic light chain (LC). The pathogenicity of LCs is encrypted in their sequence, yet molecular determinants of amyloidogenesis are poorly understood. Higher rates of N-glycosylation among clonal κ LCs from patients with AL amyloidosis compared to other monoclonal gammopathies indicate that this post-translational modification is associated with a higher risk of developing AL amyloidosis. Here, we exploited LC sequence information from previously published amyloidogenic and control clonal LCs and from a series of 220 patients with AL amyloidosis or multiple myeloma followed at our Institutions to define sequence and spatial features of N-glycosylation, combining bioinformatics, biochemical, proteomics, structural and genetic analyses. We found peculiar sequence and spatial pattern of N-glycosylation in amyloidogenic κ LCs, with most of the N-glycosylation sites laying in the framework region 3, particularly within the E strand, and consisting mainly of the NFT sequon, setting them apart with respect to non-amyloidogenic clonal LCs. Our data further support a potential role of N-glycosylation in determining the pathogenic behavior of a subset of amyloidogenic LCs and may help refine current N-glycosylation-based prognostic assessments for patients with monoclonal gammopathies.


Assuntos
Amiloidose , Amiloidose de Cadeia Leve de Imunoglobulina , Mieloma Múltiplo , Amiloidose/genética , Glicosilação , Humanos , Cadeias Leves de Imunoglobulina/genética , Cadeias Leves de Imunoglobulina/metabolismo , Amiloidose de Cadeia Leve de Imunoglobulina/genética , Cadeias kappa de Imunoglobulina/genética , Mieloma Múltiplo/genética
15.
Biochem Biophys Res Commun ; 616: 70-75, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35640488

RESUMO

The Reactive intermediate deiminase (Rid) protein family is a group of enzymes widely distributed in all Kingdoms of Life. RidA is one of the eight known Rid subfamilies, and its members act by preventing the accumulation of 2-aminoacrylate, a highly reactive enamine generated during the metabolism of some amino acids, by hydrolyzing the 2-iminopyruvate tautomer to pyruvate and ammonia. RidA members are homotrimers exhibiting a remarkable thermal stability. Recently, a novel subclass of RidA was identified in teleosts, which differs for stability and substrate specificity from the canonical RidA. In this study we structurally and functionally characterized RidA from Apis mellifera (AmRidA) as the first example of an invertebrate RidA to assess its belonging to the canonical RidA group, and to further correlate structural and functional features of this novel enzyme class. Circular dichroism revealed a spectrum typical of the RidA proteins and the high thermal stability. AmRidA exhibits the 2-imino acid hydrolase activity typical of RidA family members with a substrate specificity similar to that of the canonical RidA. The crystal structure confirmed the homotrimeric assembly and the presence of the typical structural features of RidA proteins, such as the proposed substrate recognition loop, and the ß-sheets ß1-ß9 and ß1-ß2. In conclusion, our data define AmRidA as a canonical member of the well-conserved RidA family and further clarify the diagnostic structural features of this class of enzymes.


Assuntos
Iminas , Scrapie , Aminoácidos , Aminoidrolases/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Abelhas , Ovinos
16.
ACS Omega ; 7(11): 9622-9635, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35350306

RESUMO

Presentation of pathogen-derived epitopes by major histocompatibility complex I (MHC-I) can lead to the activation and expansion of specific CD8+ T cell clones, eventually resulting in the destruction of infected target cells. Altered peptide ligands (APLs), designed to elicit immunogenicity toward a wild-type peptide, may affect the overall stability of MHC-I/peptide (pMHC) complexes and modulate the recognition by T cell receptors (TCR). Previous works have demonstrated that proline substitution at position 3 (p3P) of different MHC-restricted epitopes, including the immunodominant LCMV-derived epitope gp33 and escape variants, may be an effective design strategy to increase epitope immunogenicity. These studies hypothesized that the p3P substitution increases peptide rigidity, facilitating TCR binding. Here, molecular dynamics simulations indicate that the p3P modification rigidifies the APLs in solution predisposing them for the MHC-I loading as well as once bound to H-2Db, predisposing them for TCR binding. Our results also indicate that peptide position 6, key for interaction of H-2Db/gp33 with the TCR P14, takes a suboptimal conformation before as well as after binding to the TCR. Analyses of H-2Db in complex with APLs, in which position 6 was subjected to an l- to d-amino acid modification, revealed small conformational changes and comparable pMHC thermal stability. However, the l- to d-modification reduced significantly the binding to P14 even in the presence of the p3P modification. Our combined data highlight the sensitivity of the TCR for the conformational dynamics of pMHC and provide further tools to dissect and modulate TCR binding and immunogenicity via APLs.

17.
Int J Mol Sci ; 23(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35055136

RESUMO

Light chain amyloidosis (AL) is caused by the aberrant overproduction of immunoglobulin light chains (LCs). The resulting abnormally high LC concentrations in blood lead to deposit formation in the heart and other target organs. Organ damage is caused not only by the accumulation of bulky amyloid deposits, but extensive clinical data indicate that circulating soluble LCs also exert cardiotoxic effects. The nematode C. elegans has been validated to recapitulate LC soluble toxicity in vivo, and in such a model a role for copper ions in increasing LC soluble toxicity has been reported. Here, we applied microscale thermophoresis, isothermal calorimetry and thermal melting to demonstrate the specific binding of Cu2+ to the variable domain of amyloidogenic H7 with a sub-micromolar affinity. Histidine residues present in the LC sequence are not involved in the binding, and yet their mutation to Ala reduces the soluble toxicity of H7. Copper ions bind to and destabilize the variable domains and induce a limited stabilization in this domain. In summary, the data reported here, elucidate the biochemical bases of the Cu2+-induced toxicity; moreover, they also show that copper binding is just one of the several biochemical traits contributing to LC soluble in vivo toxicity.


Assuntos
Cobre/metabolismo , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/metabolismo , Amiloidose de Cadeia Leve de Imunoglobulina/metabolismo , Substituição de Aminoácidos , Animais , Caenorhabditis elegans , Calorimetria , Modelos Animais de Doenças , Histidina/metabolismo , Humanos , Cadeias Leves de Imunoglobulina/toxicidade , Modelos Moleculares , Conformação Proteica , Espécies Reativas de Oxigênio/metabolismo
18.
FEBS J ; 289(2): 494-506, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34482629

RESUMO

Light-chain (AL) amyloidosis is characterized by deposition of immunoglobulin light chains (LC) as fibrils in target organs. Alongside the full-length protein, abundant LC fragments are always present in AL deposits. Herein, by combining gel-based and mass spectrometry analyses, we identified and compared the fragmentation sites of amyloid LCs from multiple organs of an AL λ amyloidosis patient (AL-55). The positions pinpointed here in kidney and subcutaneous fat, alongside those previously detected in heart of the same patient, were aligned and mapped on the LC's dimeric and fibrillar states. All tissues contain fragmented LCs along with the full-length protein; the fragment pattern is coincident across organs, although microheterogeneity exists. Multiple cleavage positions were detected; some are shared, whereas some are organ-specific, likely due to a complex of proteases. Cleavage sites are concentrated in 'proteolysis-prone' regions, common to all tissues. Several proteolytic sites are not accessible on native dimers, while they are compatible with fibrils. Overall, data suggest that the heterogeneous ensemble of LC fragments originates in tissues and is consistent with digestion of preformed fibrils, or with the hypothesis that initial proteolytic cleavage of the constant domain triggers the amyloidogenic potential of LCs, followed by subsequent proteolytic degradation. This work provides a unique set of molecular data on proteolysis from ex vivo amyloid, which allows discussing hypotheses on role and timing of proteolytic events occurring along amyloid formation and accumulation in AL patients.


Assuntos
Neuropatias Amiloides/genética , Amiloide/genética , Proteínas Amiloidogênicas/genética , Amiloidose/genética , Cadeias Leves de Imunoglobulina/genética , Amiloide/metabolismo , Neuropatias Amiloides/metabolismo , Neuropatias Amiloides/patologia , Amiloidose/metabolismo , Amiloidose/patologia , Endopeptidases/genética , Humanos , Cadeias Leves de Imunoglobulina/metabolismo , Cinética , Peptídeo Hidrolases/genética , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Proteólise , Termodinâmica
19.
Cell Mol Life Sci ; 78(19-20): 6409-6430, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34405255

RESUMO

Neuroserpin is a serine protease inhibitor identified in a search for proteins implicated in neuronal axon growth and synapse formation. Since its discovery over 30 years ago, it has been the focus of active research. Many efforts have concentrated in elucidating its neuroprotective role in brain ischemic lesions, the structural bases of neuroserpin conformational change and the effects of neuroserpin polymers that underlie the neurodegenerative disease FENIB (familial encephalopathy with neuroserpin inclusion bodies), but the investigation of the physiological roles of neuroserpin has increased over the last years. In this review, we present an updated and critical revision of the current literature dealing with neuroserpin, covering all aspects of research including the expression and physiological roles of neuroserpin, both inside and outside the nervous system; its inhibitory and non-inhibitory mechanisms of action; the molecular structure of the monomeric and polymeric conformations of neuroserpin, including a detailed description of the polymerisation mechanism; and the involvement of neuroserpin in human disease, with particular emphasis on FENIB. Finally, we briefly discuss the identification by genome-wide screening of novel neuroserpin variants and their possible pathogenicity.


Assuntos
Neuropeptídeos/metabolismo , Serpinas/metabolismo , Animais , Axônios/metabolismo , Epilepsias Mioclônicas/metabolismo , Transtornos Heredodegenerativos do Sistema Nervoso/metabolismo , Humanos , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Polimerização , Neuroserpina
20.
Immunity ; 54(8): 1772-1787.e9, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34289378

RESUMO

As substantial constituents of the multiple myeloma (MM) microenvironment, pro-inflammatory macrophages have emerged as key promoters of disease progression, bone destruction, and immune impairment. We identify beta-2-microglobulin (ß2m) as a driver in initiating inflammation in myeloma-associated macrophages (MAMs). Lysosomal accumulation of phagocytosed ß2m promotes ß2m amyloid aggregation in MAMs, resulting in lysosomal rupture and ultimately production of active interleukin-1ß (IL-1ß) and IL-18. This process depends on activation of the NLRP3 inflammasome after ß2m accumulation, as macrophages from NLRP3-deficient mice lack efficient ß2m-induced IL-1ß production. Moreover, depletion or silencing of ß2m in MM cells abrogates inflammasome activation in a murine MM model. Finally, we demonstrate that disruption of NLRP3 or IL-18 diminishes tumor growth and osteolytic bone destruction normally promoted by ß2m-induced inflammasome signaling. Our results provide mechanistic evidence for ß2m's role as an NLRP3 inflammasome activator during MM pathogenesis. Moreover, inhibition of NLRP3 represents a potential therapeutic approach in MM.


Assuntos
Amiloide/metabolismo , Mieloma Múltiplo/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Macrófagos Associados a Tumor/metabolismo , Microglobulina beta-2/metabolismo , Animais , Células Cultivadas , Humanos , Inflamação/imunologia , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Lisossomos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fagocitose/imunologia , Transdução de Sinais/imunologia , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Microglobulina beta-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...