Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nature ; 613(7944): 543-549, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36418404

RESUMO

The cerebellum is thought to help detect and correct errors between intended and executed commands1,2 and is critical for social behaviours, cognition and emotion3-6. Computations for motor control must be performed quickly to correct errors in real time and should be sensitive to small differences between patterns for fine error correction while being resilient to noise7. Influential theories of cerebellar information processing have largely assumed random network connectivity, which increases the encoding capacity of the network's first layer8-13. However, maximizing encoding capacity reduces the resilience to noise7. To understand how neuronal circuits address this fundamental trade-off, we mapped the feedforward connectivity in the mouse cerebellar cortex using automated large-scale transmission electron microscopy and convolutional neural network-based image segmentation. We found that both the input and output layers of the circuit exhibit redundant and selective connectivity motifs, which contrast with prevailing models. Numerical simulations suggest that these redundant, non-random connectivity motifs increase the resilience to noise at a negligible cost to the overall encoding capacity. This work reveals how neuronal network structure can support a trade-off between encoding capacity and redundancy, unveiling principles of biological network architecture with implications for the design of artificial neural networks.


Assuntos
Córtex Cerebelar , Rede Nervosa , Vias Neurais , Neurônios , Animais , Camundongos , Córtex Cerebelar/citologia , Córtex Cerebelar/fisiologia , Córtex Cerebelar/ultraestrutura , Redes Neurais de Computação , Neurônios/citologia , Neurônios/fisiologia , Neurônios/ultraestrutura , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Rede Nervosa/ultraestrutura , Microscopia Eletrônica de Transmissão
3.
Neuroimage ; 252: 119037, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35219859

RESUMO

Understanding the organizational principles of human brain activity at the systems level remains a major challenge in network neuroscience. Here, we introduce a fully data-driven approach based on graph learning to extract meaningful repeating network patterns from regionally-averaged timecourses. We use the Graph Laplacian Mixture Model (GLMM), a generative model that treats functional data as a collection of signals expressed on multiple underlying graphs. By exploiting covariance between activity of brain regions, these graphs can be learned without resorting to structural information. To validate the proposed technique, we first apply it to task fMRI with a known experimental paradigm. The probability of each graph to occur at each time-point is found to be consistent with the task timing, while the spatial patterns associated to each epoch of the task are in line with previously established activation patterns using classical regression analysis. We further on apply the technique to resting state data, which leads to extracted graphs that correspond to well-known brain functional activation patterns. The GLMM allows to learn graphs entirely from the functional activity that, in practice, turn out to reveal high degrees of similarity to the structural connectome. The Default Mode Network (DMN) is always captured by the algorithm in the different tasks and resting state data. Therefore, we compare the states corresponding to this network within themselves and with structure. Overall, this method allows us to infer relevant functional brain networks without the need of structural connectome information. Moreover, we overcome the limitations of windowing the time sequences by feeding the GLMM with the whole functional signal and neglecting the focus on sub-portions of the signals.


Assuntos
Conectoma , Algoritmos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Conectoma/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...