Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Chemosphere ; 301: 134716, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35487362

RESUMO

The contamination of water sources by pharmaceutically active compounds (PhACs) and their effect on aquatic communities and human health have become an environmental concern worldwide. Membrane bioreactors (MBRs) are an alternative to improve biological removal of recalcitrant organic compounds from municipal sewage. Their efficiency can be increased by using high retention membranes such as forward osmosis (FO) and membrane distillation (MD). Thus, this research aimed to evaluate the performance of an anaerobic osmotic MBR coupled with MD (OMBR-MD) in the treatment of municipal sewage containing PhACs and estrogenic activity. A submerged hybrid FO-MD module was integrated into the bioreactor. PhACs removal was higher than 96% due to biological degradation, biosorption and membrane retention. Biological removal of the PhACs was affected by the salinity build-up in the bioreactor, with reduction in biodegradation after 32 d. However, salinity increment had little or no effect on biosorption removal. The anaerobic OMBR-MD removed >99.9% of estrogenic activity, resulting in a distillate with 0.14 ng L-1 E2-eq, after 22 d, and 0.04 ng L-1 E2-eq, after 32 d. OMBR-MD treatment promoted reduction in environmental and human health risks from high to low, except for ketoprofen, which led to medium acute environmental and human health risks. Carcinogenic risks were reduced from unacceptable to negligible, regarding estrogenic activity. Thus, the hybrid anaerobic OMBR-MD demonstrated strong performance in reducing risks, even when human health is considered.


Assuntos
Esgotos , Purificação da Água , Anaerobiose , Reatores Biológicos , Humanos , Membranas Artificiais , Osmose , Preparações Farmacêuticas , Águas Residuárias
2.
Environ Sci Pollut Res Int ; 28(19): 23778-23790, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33128710

RESUMO

Conventional sewage treatment systems are generally not designed to remove micropollutants, requiring the development of new technologies, such as the combination of biological processes with advanced oxidative processes. The configuration of an anaerobic expanded granular sludge bed (EGSB) reactor stands out for its use of granular biomass and high sludge bed expansion. Ozonation is an advanced oxidative process that stands out as one of the most promising technologies for the degradation of micropollutants. Thus, the present work aimed to evaluate the removal of drugs through the application of ozonation as a polishing process for the effluent of an EGSB reactor that was fed with synthetic sewage. Ozonation was shown to be efficient in the degradation of these compounds, reaching removals above 90%. It was found that the degradation profile of each drug varied according to its chemical structure since some drugs are more susceptible to oxidation than others and since the concentrations of pharmaceuticals are also related to their removal. Moreover, the assessment of risks to the environment and human health confirmed the need to assess the best scenario for risk reduction considering all drugs, since even with almost complete removal of some compounds, the effluents still showed toxicity. Thus, the high removal efficiencies found for the evaluated micropollutants showed that this technique has the potential to be used to improve the quality of biological reactor effluents or even to be combined in effluent reuse systems.


Assuntos
Ozônio , Esgotos , Anaerobiose , Reatores Biológicos , Humanos , Oxirredução , Eliminação de Resíduos Líquidos
3.
Artigo em Inglês | MEDLINE | ID: mdl-29206081

RESUMO

Direct (UV) and hydrogen peroxide-assisted (UV/H2O2) photolysis were investigated in bench-scale for removing the organic compounds present in the electrodialysis reversal (EDR) brine from a refinery wastewater reclamation plant. In the UV/H2O2 experiments, a COD:H2O2 molar ratios of 1:1, 1:2 and 1:3 were tested by recirculating the brine in the UV reactor for 120 min. Results showed a significant reduction in UVA254, whereas no reduction was observed for chemical oxygen demand (COD), in the UV process, suggesting great cleavage but limited mineralization of the organic matter. UV/H2O2 with C:H2O2 ratio of 1:3 exhibited high efficiency in removing the organic matter (COD removal of 92% with an electrical energy per removal order (EEO) value of 22 kW h m-3). Although the EDR brine has high salinity, no strong scavenging effect of •OH was found in the water matrix due to the high concentration of anions, especially chloride and bicarbonate. Finally, UV/H2O2 with C:H2O2 ratio of 1:3 and residence time of 120 min is an efficient alternative for organic matter removal of EDR brine from refinery wastewater reclamation plant showing total capital cost (CapEx) estimated at US$ 369,653.00 and total operational cost (OpEx), at US$ 1.772 per cubic meter of effluent.


Assuntos
Peróxido de Hidrogênio/química , Compostos Orgânicos/isolamento & purificação , Petróleo , Sais/isolamento & purificação , Raios Ultravioleta , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Análise da Demanda Biológica de Oxigênio , Conservação dos Recursos Hídricos/métodos , Filtração/métodos , Humanos , Peróxido de Hidrogênio/farmacologia , Indústria de Petróleo e Gás/métodos , Oxirredução , Petróleo/análise , Fotólise , Salinidade , Instalações de Eliminação de Resíduos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/efeitos da radiação
4.
Bioresour Technol ; 245(Pt A): 342-350, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28898829

RESUMO

This research investigated the effect of hydraulic retention time (HRT) on two-stage anaerobic membrane bioreactor (2-SAnMBR) performance treating sugarcane vinasse. The experimental setup consisted of an upflow acidogenic reactor and a continuous stirred methanogenic reactor, fitted with submersed microfiltration hollow-fiber membranes. The results indicated excellent performance and robustness of 2-SAnMBR. The reduction in HRT of 5.3-3.1days did not cause loss of its performance. The 2-SAnMBR showed high capacity of removing organic matter (97%), producing biogas (6.3Nm3 of CH4 per m3 of treated vinasse) and did not completely remove important nutrients to fertigation. Reducing the HRT, the average mass of soluble microbial products (SMP) and extracellular polymeric substances (EPS) per mass of mixed liquor volatile suspended solids (MLVSS) increased. Consequently, the transmembrane pressure (TPM) rate and fouling resistance rise. Despite the fouling effect, physical and chemical cleaning processes were able to recover operational permeability.


Assuntos
Biocombustíveis , Reatores Biológicos , Saccharum , Anaerobiose , Membranas Artificiais , Esgotos
5.
Water Sci Technol ; 74(2): 367-74, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27438241

RESUMO

This work assessed the potential of nanofiltration (NF) and reverse osmosis (RO) to treat acid streams contaminated with metals, such as effluent from the pressure oxidation process (POX) used in refractory gold ore processing. NF and RO were evaluated in terms of rejections of sulfuric acid and metals. Regarding NF, high sulfuric acid permeation (∼100%), was observed, while metals were retained with high efficiencies (∼90%), whereas RO led to high acid rejections (<88%) when conducted in pH values higher than 1. Thus, sequential use of NF and RO was proved to be a promising treatment for sulfuric acid solutions contaminated by metals, such as POX effluent. In this context, a purified acid stream could be recovered in NF permeate, which could be further concentrated in RO. Recovered acid stream could be reused in the gold ore processing or commercialized. A metal-enriched stream could be also recovered in NF retentate and transferred to a subsequent metal recovery stage. In addition, considering the high acid rejection obtained through the proposed system, RO permeate could be used as recycling water.


Assuntos
Osmose , Reciclagem , Ultrafiltração/métodos , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Água/análise , Ouro , Resíduos Industriais , Metais/análise , Mineração , Ácidos Sulfúricos/análise , Eliminação de Resíduos Líquidos/instrumentação , Purificação da Água
6.
Artigo em Inglês | MEDLINE | ID: mdl-27050340

RESUMO

The purpose of this article is to evaluate the integration of the air stripping, membrane bioreactor (MBR) and nanofiltration (NF) processes for the treatment of landfill leachate (LFL). Pretreatment by air stripping, without adjustment of pH, removed 65% of N-NH3 present in LFL. After pretreatment, the effluent was treated in MBR obtaining 44% of COD removal, and part of the N-NH3 was converted to nitrite and nitrate, which was later removed in the post-treatment. Nanofiltration was shown to be an effective process to improve the removal of organic compounds, the high toxicity present in LFL and nitrite and nitrate generated in the MBR. The system (air stripping + MBR + nanofiltration) obtained great efficiency of removal in most parameters analyzed, with overall removal of COD, ammonia, color and toxicity approximately 88, 95, 100 and 100%, respectively. By this route, treated landfill leachate may be reused at the landfill as water for dust arrestment and also as earth work on construction sites.


Assuntos
Reatores Biológicos , Eliminação de Resíduos/métodos , Poluentes Químicos da Água/química , Purificação da Água/métodos , Filtração , Humanos , Nanopartículas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...