Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JIMD Rep ; 65(1): 3-9, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38186851

RESUMO

The ACO2 gene encodes the mitochondrial protein aconitate hydratase, which is responsible for catalyzing the interconversion of citrate into isocitrate in the tricarboxylic acid (TCA) cycle. Mitochondrial aconitase is expressed ubiquitously, and deficiencies in TCA-cycle enzymes have been reported to cause various neurodegenerative diseases due to disruption of cellular energy metabolism and development of oxidative stress. We investigated a severe early infantile-onset neurometabolic syndrome due to a homozygous novel variant in exon 13 of the ACO2 gene. The in vitro pathogenicity of this variant of unknown significance was demonstrated by the loss of both protein expression and its enzymatic activity on muscle tissue sample taken from the patient. The patient presented with progressive encephalopathy soon after birth, characterized by hypotonia, progressive severe muscle atrophy, and respiratory failure. Serial brain magnetic resonance imaging showed progressive abnormalities compatible with a metabolic disorder, possibly mitochondrial. Muscle biopsy disclosed moderate myopathic alterations and features consistent with a mitochondriopathy albeit nonspecific. The course was characterized by progressive worsening of the clinical and neurological picture, and the patient died at 5 months of age. This study provides the first report on the validation in muscle from human subjects regarding in vitro analysis for mitochondrial aconitase activity. To our knowledge, no prior reports have demonstrated a correlation of phenotypic and diagnostic characteristics with in vitro muscle enzymatic activity of mitochondrial aconitase in humans. In conclusion, this case further expands the genetic spectrum of ACO2 variants and defines a complex case of severe neonatal neurometabolic disorder.

2.
Children (Basel) ; 10(4)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37189996

RESUMO

INTRODUCTION: The Performance of Upper Limb version 2.0 (PUL 2.0) is increasingly used in Duchenne Muscular Dystrophy (DMD) to study longitudinal functional changes of motor upper limb function in ambulant and non-ambulant patients. The aim of this study was to evaluate changes in upper limb functions in patients carrying mutations amenable to skipping exons 44, 45, 51 and 53. METHODS: All DMD patients were assessed using the PUL 2.0 for at least 2 years, focusing on 24-month paired visits in those with mutations eligible for skipping exons 44, 45, 51 and 53. RESULTS: 285 paired assessments were available. The mean total PUL 2.0 12-month change was -0.67 (2.80), -1.15 (3.98), -1.46 (3.37) and -1.95 (4.04) in patients carrying mutations amenable to skipping exon 44, 45, 51 and 53, respectively. The mean total PUL 2.0 24-month change was -1.47 (3.73), -2.78 (5.86), -2.95 (4.56) and -4.53 (6.13) in patients amenable to skipping exon 44, 45, 51 and 53, respectively. The difference in PUL 2.0 mean changes among the type of exon skip class for the total score was not significant at 12 months but was significant at 24 months for the total score (p < 0.001), the shoulder (p = 0.01) and the elbow domain (p < 0.001), with patients amenable to skipping exon 44 having smaller changes compared to those amenable to skipping exon 53. There was no difference within ambulant or non-ambulant cohorts when subdivided by exon skip class for the total and subdomains score (p > 0.05). CONCLUSIONS: Our results expand the information on upper limb function changes detected by the PUL 2.0 in a relatively large group of DMD patients with distinct exon-skipping classes. This information can be of help when designing clinical trials or in the interpretation of the real world data including non-ambulant patients.

3.
Front Oncol ; 12: 1082062, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36727064

RESUMO

The 2021 World Health Organization Classification of Tumors of the Central Nervous System, Fifth Edition (WHO-CNS5), has strengthened the concept of tumor grade as a combination of histologic features and molecular alterations. The WHO-CNS5 tumor type "Diffuse midline glioma, H3K27-altered," classified within the family of "Pediatric-type diffuse high-grade gliomas," incarnates an ideally perfect integrated diagnosis in which location, histology, and genetics clearly define a specific tumor entity. It tries to evenly characterize a group of neoplasms that occur primarily in children and midline structures and that have a dismal prognosis. Such a well-defined pathological categorization has strongly influenced the pediatric oncology community, leading to the uniform treatment of most cases of H3K27-altered diffuse midline gliomas (DMG), based on the simplification that the mutation overrides the histological, radiological, and clinical characteristics of such tumors. Indeed, multiple studies have described pediatric H3K27-altered DMG as incurable tumors. However, in biology and clinical practice, exceptions are frequent and complexity is the rule. First of all, H3K27 mutations have also been found in non-diffuse gliomas. On the other hand, a minority of DMGs are H3K27 wild-type but have a similarly poor prognosis. Furthermore, adult-type tumors may rarely occur in children, and differences in prognosis have emerged between adult and pediatric H3K27-altered DMGs. As well, tumor location can determine differences in the outcome: patients with thalamic and spinal DMG have significantly better survival. Finally, other concomitant molecular alterations in H3K27 gliomas have been shown to influence prognosis. So, when such additional mutations are found, which one should we focus on in order to make the correct clinical decision? Our review of the current literature on pediatric diffuse midline H3K27-altered DMG tries to address such questions. Indeed, H3K27 status has become a fundamental supplement to the histological grading of pediatric gliomas; however, it might not be sufficient alone to exhaustively define the complex biological behavior of DMG in children and might not represent an indication for a unique treatment strategy across all patients, irrespective of age, additional molecular alterations, and tumor location.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...