Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 17: 1281710, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027511

RESUMO

The enteric glia has been shown as a potential component of neuroimmune interactions that signal in the gut-brain axis during Parkinson's disease (PD). Enteric glia are a peripheral glial type found in the enteric nervous system (ENS) that, associated with enteric neurons, command various gastrointestinal (GI) functions. They are a unique cell type, with distinct phenotypes and distribution in the gut layers, which establish relevant neuroimmune modulation and regulate neuronal function. Comprehension of enteric glial roles during prodromal and symptomatic phases of PD should be a priority in neurogastroenterology research, as the reactive enteric glial profile, gastrointestinal dysfunction, and colonic inflammation have been verified during the prodromal phase of PD-a moment that may be interesting for interventions. In this review, we explore the mechanisms that should govern enteric glial signaling through the gut-brain axis to understand pathological events and verify the possible windows and pathways for therapeutic intervention. Enteric glia directly modulate several functional aspects of the intestine, such as motility, visceral sensory signaling, and immune polarization, key GI processes found deregulated in patients with PD. The search for glial biomarkers, the investigation of temporal-spatial events involving glial reactivity/signaling, and the proposal of enteric glia-based therapies are clearly demanded for innovative and intestine-related management of PD.

2.
Am J Physiol Gastrointest Liver Physiol ; 325(2): G93-G108, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37253656

RESUMO

Coronavirus disease 2019 (COVID-19) has been demonstrated to affect several systems of the human body, including the gastrointestinal and nervous systems. The enteric nervous system (ENS) is a division of the autonomic nervous system that extends throughout the gut, regulates gastrointestinal function, and is therefore involved in most gut dysfunctions, including those resulting from many viral infections. Growing evidence highlights enteric neural cells and microbiota as important players in gut inflammation and dysfunction. Furthermore, the ENS and gastrointestinal immune system work together establishing relevant neuroimmune interactions during both health and disease. In recent years, gut-driven processes have also been implicated as players in systemic inflammation and in the initiation and propagation of several central nervous system pathologies, which seem to be hallmarks of COVID-19. In this review, we aim to describe evidence of the gastrointestinal and ENS infection with a focus on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We discuss here viral-induced mechanisms, neuroplasticity, and neuroinflammation to call attention to the enteric neuroglial network as a nervous system with a sensitive and crucial position to be not only a target of the new coronavirus but also a way in and trigger of COVID-19-related symptoms.


Assuntos
COVID-19 , Sistema Nervoso Entérico , Humanos , SARS-CoV-2 , Sistema Nervoso Entérico/fisiologia , Trato Gastrointestinal/fisiologia , Inflamação
3.
Brain Res Bull ; 187: 111-121, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35772606

RESUMO

Enteric glial cells (EGCs) constitute the majority of the neural population of the enteric nervous system and are found in all layers of the gastrointestinal tract. It is active in enteric functions such as immunomodulation, participating in inflammation and intestinal epithelial barrier (IEB) regulation. Both EGCs and IEB have been described as altered in Parkinson's disease (PD). Using an animal model of PD induced by 6-hydroxydopamine (6-OHDA), we investigated the effect of ongoing neurodegeneration on EGCs and inflammatory response during short periods after model induction. C57Bl/6 male mice were unilaterally injected with 6-OHDA in the striatum. Compared to the control group, 6-OHDA animals showed decreased relative water content in their feces from 1 w after model induction. Moreover, at 1 and 2 w post-induction, groups showed histopathological changes indicative of intestinal inflammation. We identified an increase in IBA1 and GFAP levels in the intestinal mucosa. At an earlier survival of 48 h, we detected an increase in GFAP in the neuromuscular layer, suggesting that it was a primary event for the upregulation of GDNF, TNF-α, and occludin in the intestinal mucosa observed after 1 w. Within 2 w, we identified a decrease in the expression of occludin barrier proteins. Thus, EGCs modulation may be an early enteric signal induced by parkinsonian neurodegeneration, followed by inflammatory and dysmotility signs besides IEB modification.


Assuntos
Sistema Nervoso Entérico , Doença de Parkinson , Animais , Modelos Animais de Doenças , Sistema Nervoso Entérico/metabolismo , Inflamação/metabolismo , Masculino , Camundongos , Neuroglia/metabolismo , Ocludina/metabolismo , Oxidopamina/metabolismo , Oxidopamina/toxicidade , Doença de Parkinson/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...