Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38257011

RESUMO

Alkaline sodium hydroxide/sodium silicate-activating high-purity metakaolin geopolymerization is described in terms of metakaolin deconstruction in tetrahedral hydrate silicate [O[Si(OH)3]]- and aluminate [Al(OH)4]- ionic precursors followed by their reassembling in linear and branched sialates monomers that randomly copolymerize into an irregular crosslinked aluminosilicate network. The novelty of the approach resides in the concurrent thermo-calorimetric (differential scanning calorimetry, DSC) and rheological (dynamic mechanical analysis, DMA) characterizations of the liquid slurry during the transformation into a gel and a structural glassy solid. Tests were run either in temperature scan (1 °C/min) or isothermal (20 °C, 30 °C, 40 °C) cure conditions. A Gaussian functions deconvolution method has been applied to the DSC multi-peak thermograms to separate the kinetic contributions of the oligomer's concurrent reactions. DSC thermograms of all tested materials are well-fitted by a combination of three overlapping Gaussian curves that are associated with the initial linear low-molecular-weight (Mw) oligomers (P1) formation, oligomers branching into alumina-rich and silica-rich gels (P2), and inter- and intra-molecular crosslinking (P3). The loss factor has been used to define viscoelastic behavioral zones for each DMA rheo-thermogram operated in the same DSC thermal conditions. Macromolecular evolution and viscoelastic properties have been obtained by pairing the deconvoluted DSC thermograms with the viscoelastic behavioral zones of the DMA rheo-thermograms. Two main chemorheological behaviors have been identified relative to pre- and post-gelation separation of the viscoelastic liquid from the viscoelastic solid. Each comprises three behavioral zones, accounting for the concurrently occurring linear and branching oligomerization, aluminate-rich and silica-rich gel nucleations, crosslinking, and vitrification. A "rubbery plateau" in the loss factor path, observed for all the testing conditions, identifies a large behavioral transition zone dividing the incipient gelling liquid slurry from the material hard setting and vitrification.

2.
Polymers (Basel) ; 15(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139940

RESUMO

This paper examines how extrusion-based 3D-printing technology is evolving, utilising geopolymers (GPs) as sustainable inorganic aluminosilicate materials. Particularly, the current state of 3D-printing geopolymers is critically examined in this study from the perspectives of the production process, printability need, mix design, early-age material features, and sustainability, with an emphasis on the effects of various elements including the examination of the fresh and hardened properties of 3D-printed geopolymers, depending on the matrix composition, reinforcement type, curing process, and printing configuration. The differences and potential of two-part and one-part geopolymers are also analysed. The applications of advanced printable geopolymer materials and products are highlighted, along with some specific examples. The primary issues, outlooks, and paths for future efforts necessary to advance this technology are identified.

3.
Polymers (Basel) ; 15(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37835971

RESUMO

Although geopolymers, as structural materials, should have superior engineering properties than traditional cementitious materials, they often need to improve their final characteristics' reproducibility due to the need for more control of the complex silico-aluminate decomposition and polymerisation stages. Thermosetting of a reactive geopolymeric paste involves tetrahedral Silicate and Aluminate precursor condensation into polyfunctional oligomers of progressively higher molecular weight, transforming the initial liquid into a gel and a structural solid. Viscosity and gelation control become particularly critical when the geopolymer is processed with 3D printing additive technology. Its physical state modification kinetics should match the flow and setting characteristics required by the deposition process. The reaction kinetics and the elastic and viscous characteristics preceding gelation and hardening have been investigated for an alkali-activated Metakaolin/Sodium Silicate-Sodium Hydroxide paste with a Si/Al ratio > 3. A chemoreological approach has been extended to these inorganic polymerisable systems, as already utilised for organic thermosetting polymers. Differential scanning calorimetry and Oscillatory DMA were carried out to monitor the advancement of the polymerisation reaction and the associated variations of the rheological viscoelastic properties. Dynamic thermal scans were run at 1 °C/min and a frequency of 10 Hz for the dynamic mechanical tests. The observed kinetics of polymerisation and variations of the elastic and viscous components of the complex viscosities and shear moduli are described in terms of polycondensation of linear and branched chains of oligomeric macromolecules of increasing complexity and molecular weight up to gelation (Gel1) and cross-linking of the gelled macrostructure (Gel2) and final glassy state. Geopolymerization can be allocated into two main behavioural zones: a viscoelastic liquid paste below 32.5% of reaction advancement and a viscoelastic solid above. Initial complex viscosities range from 2.3 ± 0.9 × 10-5 MPa*s to 6.8 ± 0.9 × 10-2 in the liquid-like state and from 1.9 ± 0.1 MPa to 9.6 ± 2.1 × 102 MPa in the solid-like state.

4.
Polymers (Basel) ; 15(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36904328

RESUMO

With progress in the bone tissue engineering (BTE) field, there is an important need to develop innovative biomaterials to improve the bone healing process using reproducible, affordable, and low-environmental-impact alternative synthetic strategies. This review thoroughly examines geopolymers' state-of-the-art and current applications and their future perspectives for bone tissue applications. This paper aims to analyse the potential of geopolymer materials in biomedical applications by reviewing the recent literature. Moreover, the characteristics of materials traditionally used as bioscaffolds are also compared, critically analysing the strengths and weaknesses of their use. The concerns that prevented the widespread use of alkali-activated materials as biomaterials (such as their toxicity and limited osteoconductivity) and the potentialities of geopolymers as ceramic biomaterials have also been considered. In particular, the possibility of targeting their mechanical properties and morphologies through their chemical compositions to meet specific and relevant requirements, such as biocompatibility and controlled porosity, is described. A statistical analysis of the published scientific literature is presented. Data on "geopolymers for biomedical applications" were extracted from the Scopus database. This paper focuses on possible strategies necessary to overcome the barriers that have limited their application in biomedicine. Specifically, innovative hybrid geopolymer-based formulations (alkali-activated mixtures for additive manufacturing) and their composites that optimise the porous morphology of bioscaffolds while minimising their toxicity for BTE are discussed.

5.
Materials (Basel) ; 15(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36500096

RESUMO

This contribution presents the preparation and characterization of new geopolymer-based mortars obtained from recycling waste deriving from the production process and the "end-of-life" of porcelain stoneware products. Structural, morphological, and mechanical studies carried out on different kinds of mortars prepared by using several types of by-products (i.e., pressed burnt and extruded ceramic waste, raw pressed and gypsum resulting from exhausted moulds) point out that these systems can be easily cast, also in complex shapes, and show a more consistent microstructure with respect to the geopolymer paste, with a reduced amount of microcracks. Moreover, the excellent adhesion of these materials to common substrates such as pottery and earthenware, even for an elevated concentration of filler, suggests their use in the field of technical-artistic value-added applications, such as restoration, conservation, and/or rehabilitation of historic monuments, or simply as materials for building revetments. For all these reasons, the proposed materials could represent valuable candidates to try to overcome some problems experienced in the cultural heritage sector concerning the selection of environmentally friendly materials that simultaneously meet art and design technical requirements.

6.
Polymers (Basel) ; 14(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36559827

RESUMO

The recent introduction of the Next Generation EU packages on the circular economy and the Italian Ecological Transition Plan has further boosted the research of effective routes to design materials with low energy and low environmental impact, in all areas of research, including art and design and cultural heritage. In this work, we describe for the first time the preparation and characterization of a new sustainable adhesive material to be used in the art and design sector, consisting of a geopolymer-based composite with polyvinyl acetate (PVAc), both considered more environmentally acceptable than the analogous inorganic or polymeric materials currently used in this sector. The key idea has been the development of organic-inorganic composites by reacting low molecular weight polymers with the geopolymer precursor to obtain a material with reduced brittleness and enhanced adhesion with common substrates. Structural, morphological, and mechanical studies pointed out the consistent microstructure of the composite materials if compared to the neat geopolymer, showing lower density (up to 15%), improved flexural strength (up to 30%), similar water absorption and a relevant toughening effect (up to 40%). Moreover, the easy pourability in complex shapes and the excellent adhesion of these materials to common substrates suggest their use as materials for restoration, rehabilitation of monuments, and decorative and architectural intervention. The organic-inorganic nature of these new materials also makes them easily recognizable from the support on which they are used, favoring, in line with the dictates of good restoration practices, their possible complete removal. For all these reasons, these new materials could represent promising candidates to overcome the limits related to the creative industry for what concerns the selection of environmentally friendly materials to meet design requirements with low environmental impacts.

7.
Materials (Basel) ; 13(13)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610547

RESUMO

This research investigates the preparation and characterization of new organic-inorganic geopolymeric foams obtained by simultaneously reacting coal fly ash and an alkali silicate solution with polysiloxane oligomers. Foaming was realized in situ using Si0 as a blowing agent. Samples with density ranging from 0.3 to 0.7 g/cm3 that show good mechanical properties (with compressive strength up to ≈5 MPa for a density of 0.7 g/cm3) along with thermal performances (λ = 0.145 ± 0.001 W/m·K for the foamed sample with density 0.330 g/cm3) comparable to commercial lightweight materials used in the field of thermal insulation were prepared. Since these foams were obtained by valorizing waste byproducts, they could be considered as low environmental impact materials and, hence, with promising perspectives towards the circular economy.

8.
Materials (Basel) ; 12(24)2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31817858

RESUMO

For the first time, hybrid organic-inorganic geopolymeric foams were successfully used as monolithic adsorbents for the removal of metallic ions pollutants from wastewaters. The foams were realized by the in situ foaming of a hybrid geopolymer obtained by a reaction of metakaolin and polysiloxane oligomers under strong alkaline conditions and then cured at room temperature. In this way, porous materials with densities ranging from 0.4 to 0.7 g/cm3 and showing good mechanical properties were produced. With the aim of producing self-standing monolithic adsorbents for the removal of metallic ions pollutants from wastewaters, these porous hybrid geopolymers were subjected to a washing pretreatment with ultrapure water, dried, and then used for absorption tests by dipping them into an aqueous solution with an initial concentration of 20 ppm of Pb2+, Cd2+, Cu2+, and Zn2+ ions. Preliminary results indicated that all the tested materials are effective in the adsorption of the tested metal ions and do not release the removed metal ions upon sinking in ultrapure water, even for a very long time. Interestingly, compressive strength tests performed before and after the washing treatments show that the foamed samples remain intact and maintain their physical-mechanical characteristics, suggesting that these kinds of materials are promising candidates for the production of self-standing, monolithic adsorbent substrates that can be easily collected when exhausted, which is a major advantage in comparison with the use of powdered adsorbents. Moreover, since these materials can be obtained by a simple and versatile experimental procedure, they could be easily shaped or directly foamed into precast molds to be used in packed beds as membranes.

9.
Molecules ; 24(19)2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569664

RESUMO

The preparation and characterization of innovative organic-inorganic hybrid geopolymers, obtained by valorizing coal fly ash generated from thermoelectric power plants, is reported for the first time. These hybrid materials are prepared by simultaneously reacting fly ash and dimethylsiloxane oligomers at 25 °C in a strongly alkaline environment. Despite their lower density, the obtained materials are characterized by highly improved mechanical properties when compared to the unmodified geopolymer obtained without the use of polysiloxanes, hence confirming the effectiveness of the applied synthetic strategy which specifically aims at obtaining hybrid materials with better mechanical properties in respect to conventional ones. This study is an example of the production of new materials by reusing and valorizing waste raw resources and by-products, thus representing a possible contribution towards the circular economy.


Assuntos
Cinza de Carvão/química , Polímeros/química , Siloxanas/química , Fenômenos Mecânicos , Microscopia Eletrônica de Varredura , Estrutura Molecular , Análise Espectral
10.
Materials (Basel) ; 9(6)2016 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-28773582

RESUMO

The preparation and characterization of composite materials based on geopolymers obtained from fly ash and epoxy resins are reported for the first time. These materials have been prepared through a synthetic method based on the concurrent reticulation of the organic and inorganic components that allows the formation of hydrogen bonding between the phases, ensuring a very high compatibility between them. These new composites show significantly improved mechanical properties if compared to neat geopolymers with the same composition and comparable performances in respect to analogous geopolymer-based composites obtained starting from more expensive raw material such as metakaolin. The positive combination of an easy synthetic approach with the use of industrial by-products has allowed producing novel low cost aluminosilicate binders that, thanks to their thixotropicity and good adhesion against materials commonly used in building constructions, could be used within the field of sustainable building.

11.
Materials (Basel) ; 9(7)2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-28773634

RESUMO

This study presents an experimental overview for the development of photocatalytic materials based on geopolymer binders as catalyst support matrices. Particularly, geopolymer matrices obtained from different solid precursors (fly ash and metakaolin), composite systems (siloxane-hybrid, foamed hybrid), and curing temperatures (room temperature and 60 °C) were investigated for the same photocatalyst content (i.e., 3% TiO2 by weight of paste). The geopolymer matrices were previously designed for different applications, ranging from insulating (foam) to structural materials. The photocatalytic activity was evaluated as NO degradation in air, and the results were compared with an ordinary Portland cement reference. The studied matrices demonstrated highly variable photocatalytic performance depending on both matrix constituents and the curing temperature, with promising activity revealed by the geopolymers based on fly ash and metakaolin. Furthermore, microstructural features and titania dispersion in the matrices were assessed by scanning electron microscopy (SEM) and energy dispersive X-ray (EDS) analyses. Particularly, EDS analyses of sample sections indicated segregation effects of titania in the surface layer, with consequent enhancement or depletion of the catalyst concentration in the active sample region, suggesting non-negligible transport phenomena during the curing process. The described results demonstrated that geopolymer binders can be interesting catalyst support matrices for the development of photocatalytic materials and indicated a large potential for the exploitation of their peculiar features.

12.
Chempluschem ; 80(6): 919-927, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31973255

RESUMO

The oxidative polymerization of 5,6-dihydroxyindoles and related hydroxyindoles at pH<3 is diverted from the usual eumelanin-forming pathway to produce mixtures of symmetric and asymmetric triazatruxenes (TATs), which could be separated and characterized for their opto-electronic properties with the aid of TD-DFT calculations. Data showed that the asymmetric isomers exhibit higher fluorescence quantum efficiencies, lower HOMO-LUMO gaps, better film homogeneity, and a more definite aggregation behavior than the symmetric counterparts, suggesting promising applications in organic electronics. The enhanced luminance exhibited by the OLED devices fabricated with blends of the synthesized TATs in poly-9-vinylcarbazole confirmed the potential of the asymmetric skeleton as new versatile platform for light-emitting materials.

13.
Chempluschem ; 80(6): 898, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31973265

RESUMO

Invited for this month's cover is the group of Dr. Paola Manini from the University of Naples Federico II. The cover picture shows the concept underlying the design of a melanin-inspired electroluminescent material for OLED devices. This article is part of a well-structured research project aimed at imitating Nature's most enigmatic and fascinating functional pigments for the design and synthesis of innovative biomaterials for organic electronics applications. Read the full text of the article at 10.1002/cplu.201402444.

14.
Int J Mol Sci ; 14(9): 18200-14, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-24013372

RESUMO

A new, easy and cost-effective synthetic procedure for the preparation of thermosetting melamine-based epoxy resins is reported. By this innovative synthetic method, different kinds of resins can be obtained just by mixing the reagents in the presence of a catalyst without solvent and with mild curing conditions. Two types of resins were synthesized using melamine and a glycidyl derivative (resins I) or by adding a silane derivative (resin II). The resins were characterized by means of chemical-physical and thermal techniques. Experimental results show that all the prepared resins have a good thermal stability, but differ for their mechanical properties: resin I exhibits remarkable stiffness with a storage modulus value up to 830 MPa at room temperature, while lower storage moduli were found for resin II, indicating that the presence of silane groups could enhance the flexibility of these materials. The resins show a pot life higher than 30 min, which makes these resins good candidates for practical applications. The functionalization with silane terminations can be exploited in the formulation of hybrid organic-inorganic composite materials.


Assuntos
Resinas Epóxi/síntese química , Triazinas/química , Resinas Epóxi/química
15.
Materials (Basel) ; 6(9): 3943-3962, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-28788310

RESUMO

The preparation and the characterization of novel geopolymer-based hybrid composites are reported. These materials have been prepared through an innovative synthetic approach, based on a co-reticulation in mild conditions of commercial epoxy based organic resins and a metakaolin-based geopolymer inorganic matrix. This synthetic strategy allows the obtainment of a homogeneous dispersion of the organic particles in the inorganic matrix, up to 25% in weight of the resin. The materials obtained present significantly enhanced compressive strengths and toughness with respect to the neat geopolymer, suggesting their wide utilization for structural applications. A preliminary characterization of the porous materials obtained by removing the organic phase from the hybrid composites by means of heat treatments is also reported. Possible applications of these materials in the field of water purification, filtration, or as lightweight insulating materials are envisaged.

16.
Materials (Basel) ; 6(7): 2989-3006, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28811418

RESUMO

The preparation and characterization of metakaolin-based geopolymer mortars containing an organic epoxy resin are presented here for the first time. The specimens have been prepared by means of an innovative in situ co-reticulation process, in mild conditions, of commercial epoxy based organic resins and geopolymeric slurry. In this way, geopolymer based hybrid mortars characterized by a different content of normalized sand (up to 66% in weight) and by a homogeneous dispersion of the organic resin have been obtained. Once hardened, these new materials show improved compressive strength and toughness in respect to both the neat geopolymer and the hybrid pastes since the organic polymer provides a more cohesive microstructure, with a reduced amount of microcracks. The microstructural characterization allows to point out the presence of an Interfacial Transition Zone similar to that observed in cement based mortars and concretes. A correlation between microstructural features and mechanical properties has been studied too.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...