Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 9(5): 220421, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35600425

RESUMO

Initially, stressed plates are widely used in modern fabrication techniques, such as additive manufacturing and UV lithography, for their tunable morphology by application of external stimuli. In this work, we propose a formal asymptotic derivation of the Föppl-von Kármán equations for an elastic plate with initial stresses, using the constitutive theory of nonlinear elastic solids with initial stresses under the assumptions of incompressibility and material isotropy. Compared to existing works, our approach allows us to determine the morphological transitions of the elastic plate without prescribing the underlying target metric of the unstressed state of the elastic body. We explicitly solve the derived FvK equations in some physical problems of engineering interest, discussing how the initial stress distribution drives the emergence of spontaneous curvatures within the deformed plate. The proposed mathematical framework can be used to tailor shape on demand, with applications in several engineering fields ranging from soft robotics to four-dimensional printing.

2.
Philos Trans A Math Phys Eng Sci ; 377(2144): 20180074, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-30879420

RESUMO

A soft solid is said to be initially stressed if it is subjected to a state of internal stress in its unloaded reference configuration. In physical terms, its stored elastic energy may not vanish in the absence of an elastic deformation, being also dependent on the spatial distribution of the underlying material inhomogeneities. Developing a sound mathematical framework to model initially stressed solids in nonlinear elasticity is key for many applications in engineering and biology. This work investigates the links between the existence of elastic minimizers and the constitutive restrictions for initially stressed materials subjected to finite deformations. In particular, we consider a subclass of constitutive responses in which the strain energy density is taken as a scalar-valued function of both the deformation gradient and the initial stress tensor. The main advantage of this approach is that the initial stress tensor belongs to the group of divergence-free symmetric tensors satisfying the boundary conditions in any given reference configuration. However, it is still unclear which physical restrictions must be imposed for the well-posedness of this elastic problem. Assuming that the constitutive response depends on the choice of the reference configuration only through the initial stress tensor, under given conditions we prove the local existence of a relaxed state given by an implicit tensor function of the initial stress distribution. This tensor function is generally not unique, and can be transformed according to the symmetry group of the material at fixed initial stresses. These results allow one to extend Ball's existence theorem of elastic minimizers for the proposed constitutive choice of initially stressed materials. This article is part of the theme issue 'Rivlin's legacy in continuum mechanics and applied mathematics'.

3.
J Elast ; 129(1-2): 107-124, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28894347

RESUMO

The experimental evidence that a feedback exists between growth and stress in tumors poses challenging questions. First, the rheological properties (the "constitutive equations") of aggregates of malignant cells are still a matter of debate. Secondly, the feedback law (the "growth law") that relates stress and mitotic-apoptotic rate is far to be identified. We address these questions on the basis of a theoretical analysis of in vitro and in vivo experiments that involve the growth of tumor spheroids. We show that solid tumors exhibit several mechanical features of a poroelastic material, where the cellular component behaves like an elastic solid. When the solid component of the spheroid is loaded at the boundary, the cellular aggregate grows up to an asymptotic volume that depends on the exerted compression. Residual stress shows up when solid tumors are radially cut, highlighting a peculiar tensional pattern. By a novel numerical approach we correlate the measured opening angle and the underlying residual stress in a sphere. The features of the mechanobiological system can be explained in terms of a feedback of mechanics on the cell proliferation rate as modulated by the availability of nutrient, that is radially damped by the balance between diffusion and consumption. The volumetric growth profiles and the pattern of residual stress can be theoretically reproduced assuming a dependence of the target stress on the concentration of nutrient which is specific of the malignant tissue.

4.
Philos Trans A Math Phys Eng Sci ; 375(2093)2017 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-28373388

RESUMO

This work investigates the morphological stability of a soft body composed of two heavy elastic layers attached to a rigid surface and subjected only to the bulk gravity force. Using theoretical and computational tools, we characterize the selection of different patterns as well as their nonlinear evolution, unveiling the interplay between elastic and geometric effects for their formation. Unlike similar gravity-induced shape transitions in fluids, such as the Rayleigh-Taylor instability, we prove that the nonlinear elastic effects saturate the dynamic instability of the bifurcated solutions, displaying a rich morphological diagram where both digitations and stable wrinkling can emerge. The results of this work provide important guidelines for the design of novel soft systems with tunable shapes, with several applications in engineering sciences.This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications.'

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...