Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pain Rep ; 9(2): e1119, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38375092

RESUMO

Introduction: Numerous potential cutaneous targets exist for treating chronic pain with topically applied active pharmaceutical ingredients. This preliminary human skin tissue investigation was undertaken to characterize several key biomarkers in keratinocytes and provide proof-of-principle data to support clinical development of topical compounded formulations for peripheral neuropathic pain syndromes, such as postherpetic neuralgia (PHN). Objectives: The study intended to identify objective biomarkers in PHN skin on a patient-by-patient personalized medicine platform. The totality of biopsy biomarker data can provide a tissue basis for directing individualized compounded topical preparations to optimize treatment efficacy. Methods: Referencing 5 of the most common actives used in topical pain relief formulations (ketamine, gabapentin, clonidine, baclofen, and lidocaine), and 3 well-established cutaneous mediators (ie, neuropeptides, cannabinoids, and vanilloids), comprehensive immunolabeling was used to quantify receptor biomarkers in skin biopsy samples taken from ipsilateral (pain) and contralateral (nonpain) dermatomes of patients with PHN. Results: Epidermal keratinocyte labeling patterns were significantly different among the cohort for each biomarker, consistent with potential mechanisms of action among keratinocytes. Importantly, the total biomarker panel indicates that the enriched PHN cohort contains distinct subgroups. Conclusion: The heterogeneity of the cohort differences may explain studies that have not shown statistical group benefit from topically administered compounded therapies. Rather, the essential need for individual tissue biomarker evaluations is evident, particularly as a means to direct a more accurately targeted topical personalized medicine approach and generate positive clinical results.

2.
Pain ; 164(11): 2435-2446, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37366590

RESUMO

ABSTRACT: The mechanisms of pain in postherpetic neuralgia (PHN) are still unclear, with some studies showing loss of cutaneous sensory nerve fibers that seemed to correlate with pain level. We report results of skin biopsies and correlations with baseline pain scores, mechanical hyperalgesia, and the Neuropathic Pain Symptom Inventory (NPSI) in 294 patients who participated in a clinical trial of TV-45070, a topical semiselective sodium 1.7 channel (Nav1.7) blocker. Intraepidermal nerve fibers and subepidermal Nav1.7 immunolabeled fibers were quantified in skin punch biopsies from the area of maximal PHN pain, as well as from the contralateral, homologous (mirror image) region. Across the entire study population, a 20% reduction in nerve fibers on the PHN-affected side compared with that in the contralateral side was noted; however, the reduction was much higher in older individuals, approaching 40% in those aged 70 years or older. There was a decrease in contralateral fiber counts as well, also noted in prior biopsy studies, the mechanism of which is not fully clear. Nav1.7-positive immunolabeling was present in approximately one-third of subepidermal nerve fibers and did not differ on the PHN-affected vs contralateral sides. Using cluster analysis, 2 groups could be identified, with the first cluster showing higher baseline pain, higher NPSI scores for squeezing and cold-induced pain, higher nerve fiber density, and higher Nav1.7 expression. While Nav1.7 varies from patient to patient, it does not seem to be a key pathophysiological driver of PHN pain. Individual differences in Nav1.7 expression, however, may determine the intensity and sensory aspects of pain.


Assuntos
Neuralgia Pós-Herpética , Neuralgia , Humanos , Idoso , Neuralgia Pós-Herpética/tratamento farmacológico , Pele/inervação , Administração Cutânea , Fibras Nervosas
3.
bioRxiv ; 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36993480

RESUMO

The versatility of somatosensation arises from heterogeneous dorsal root ganglion (DRG) neurons. However, soma transcriptomes of individual human DRG (hDRG) neurons-critical in-formation to decipher their functions-are lacking due to technical difficulties. Here, we developed a novel approach to isolate individual hDRG neuron somas for deep RNA sequencing (RNA-seq). On average, >9,000 unique genes per neuron were detected, and 16 neuronal types were identified. Cross-species analyses revealed remarkable divergence among pain-sensing neurons and the existence of human-specific nociceptor types. Our deep RNA-seq dataset was especially powerful for providing insight into the molecular mechanisms underlying human somatosensation and identifying high potential novel drug targets. Our dataset also guided the selection of molecular markers to visualize different types of human afferents and the discovery of novel functional properties using single-cell in vivo electrophysiological recordings. In summary, by employing a novel soma sequencing method, we generated an unprecedented hDRG neuron atlas, providing new insights into human somatosensation, establishing a critical foundation for translational work, and clarifying human species-species properties.

4.
Pain ; 163(5): 834-851, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35001054

RESUMO

ABSTRACT: CB2 cannabinoid receptors (CB2) are a promising therapeutic target that lacks unwanted side effects of CB1 activation. However, the cell types expressing CB2 that mediate these effects remain poorly understood. We used transgenic mice with CB2 promoter-driven expression of enhanced green fluorescent protein (EGFP) to study cell types that express CB2 and suppress neuropathic nociception in a mouse model of chemotherapy-induced peripheral neuropathy. Structurally distinct CB2 agonists (AM1710 and LY2828360) suppressed paclitaxel-induced mechanical and cold allodynia in CB2EGFP reporter mice with established neuropathy. Antiallodynic effects of AM1710 were blocked by SR144528, a CB2 antagonist with limited CNS penetration. Intraplantar AM1710 administration suppressed paclitaxel-induced neuropathic nociception in CB2EGFP but not CB2 knockout mice, consistent with a local site of antiallodynic action. mRNA expression levels of the anti-inflammatory cytokine interleukin-10 were elevated in the lumbar spinal cord after intraplantar AM1710 injection along with the proinflammatory cytokine tumor necrosis factor alpha and chemokine monocyte chemoattractant protein-1. CB2EGFP, but not wildtype mice, exhibited anti-GFP immunoreactivity in the spleen. However, the anti-GFP signal was below the threshold for detection in the spinal cord and brain of either vehicle-treated or paclitaxel-treated CB2EGFP mice. EGFP fluorescence was coexpressed with CB2 immunolabeling in stratified patterns among epidermal keratinocytes. EGFP fluorescence was also expressed in dendritic cells in the dermis, Langerhans cells in the epidermis, and Merkel cells. Quantification of the EGFP signal revealed that Langerhans cells were dynamically increased in the epidermis after paclitaxel treatment. Our studies implicate CB2 expressed in previously unrecognized populations of skin cells as a potential target for suppressing chemotherapy-induced neuropathic nociception.


Assuntos
Antineoplásicos , Canabinoides , Neuralgia , Animais , Antineoplásicos/efeitos adversos , Canabinoides/farmacologia , Citocinas , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Camundongos , Camundongos Knockout , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Paclitaxel/toxicidade , Purinas , Piranos , Receptor CB1 de Canabinoide , Receptor CB2 de Canabinoide/genética
5.
Anat Rec (Hoboken) ; 305(3): 514-534, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35023618

RESUMO

Cetacean behavior and life history imply a role for somatosensory detection of critical signals unique to their marine environment. As the sensory anatomy of cetacean glabrous skin has not been fully explored, skin biopsy samples of the flank skin of humpback whales were prepared for general histological and immunohistochemical (IHC) analyses of innervation in this study. Histology revealed an exceptionally thick epidermis interdigitated by numerous, closely spaced long, thin diameter penicillate dermal papillae (PDP). The dermis had a stratified organization including a deep neural plexus (DNP) stratum intermingled with small arteries that was the source of intermingled nerves and arterioles forming a more superficial subepidermal neural plexus (SNP) stratum. The patterns of nerves branching through the DNP and SNP that distribute extensive innervation to arteries and arterioles and to the upper dermis and PDP provide a dense innervation associated through the whole epidermis. Some NF-H+ fibers terminated at the base of the epidermis and as encapsulated endings in dermal papillae similar to Merkel innervation and encapsulated endings seen in terrestrial mammals. However, unlike in all mammalian species assessed to date, an unusual acellular gap was present between the perineural sheaths and the central core of axons in all the cutaneous nerves perhaps as mechanism to prevent high hydrostatic pressure from compressing and interfering with axonal conductance. Altogether the whale skin has an exceptionally dense low-threshold mechanosensory system innervation most likely adapted for sensing hydrodynamic stimuli, as well as nerves that can likely withstand high pressure experienced during deep dives.


Assuntos
Jubarte , Animais , Cetáceos , Células Epidérmicas , Epiderme , Pele/inervação
6.
Front Pain Res (Lausanne) ; 2: 790524, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35295428

RESUMO

This study investigated quantifiable measures of cutaneous innervation and algesic keratinocyte biomarkers to determine correlations with clinical measures of patient pain perception, with the intent to better discriminate between diabetic patients with painful diabetic peripheral neuropathy (PDPN) compared to patients with low-pain diabetic peripheral neuropathy (lpDPN) or healthy control subjects. A secondary objective was to determine if topical treatment with a 5% lidocaine patch resulted in correlative changes among the quantifiable biomarkers and clinical measures of pain perception, indicative of potential PDPN pain relief. This open-label proof-of-principle clinical research study consisted of a pre-treatment skin biopsy, a 4-week topical 5% lidocaine patch treatment regimen for all patients and controls, and a post-treatment skin biopsy. Clinical measures of pain and functional interference were used to monitor patient symptoms and response for correlation with quantitative skin biopsy biomarkers of innervation (PGP9.5 and CGRP), and epidermal keratinocyte biomarkers (Nav1.6, Nav1.7, CGRP). Importantly, comparable significant losses of epidermal neural innervation (intraepidermal nerve fibers; IENF) and dermal innervation were observed among PDPN and lpDPN patients compared with control subjects, indicating that innervation loss alone may not be the driver of pain in diabetic neuropathy. In pre-treatment biopsies, keratinocyte Nav1.6, Nav1.7, and CGRP immunolabeling were all significantly increased among PDPN patients compared with control subjects. Importantly, no keratinocyte biomarkers were significantly increased among the lpDPN group compared with control. In post-treatment biopsies, the keratinocyte Nav1.6, Nav1.7, and CGRP immunolabeling intensities were no longer different between control, lpDPN, or PDPN cohorts, indicating that lidocaine treatment modified the PDPN-related keratinocyte increases. Analysis of the PDPN responder population demonstrated that increased pretreatment keratinocyte biomarker immunolabeling for Nav1.6, Nav1.7, and CGRP correlated with positive outcomes to topical lidocaine treatment. Epidermal keratinocytes modulate the signaling of IENF, and several analgesic and algesic signaling systems have been identified. These results further implicate epidermal signaling mechanisms as modulators of neuropathic pain conditions, highlight a novel potential mode of action for topical treatments, and demonstrate the utility of comprehensive skin biopsy evaluation to identify novel biomarkers in clinical pain studies.

7.
Neurobiol Pain ; 5: 100021, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31194066

RESUMO

Despite enormous investment in research and development of novel treatments, there remains a lack of predictable, effective, and safe therapeutics for human chronic neuropathic pain (NP) afflictions. NP continues to increase among the population and treatments remain a major unmet public health care need. In recent years, numerous costly (time and money) failures have occurred attempting to translate successful animal pain model results, typically using rodents, to human clinical trials. These continued failures point to the essential need for better animal models of human pain conditions. To address this challenge, we have previously developed a peripheral neuritis trauma (PNT) model of chronic pain induced by a proximal sciatic nerve irritation in pigs, which have a body size, metabolism, skin structure, and cutaneous innervation more similar to humans. Here, we set out to determine the extent that the PNT model presents with cutaneous neuropathologies consistent with those associated with human chronic NP afflictions. Exactly as is performed in human skin biopsies, extensive quantitative multi-molecular immunofluorescence analyses of porcine skin biopsies were performed to assess cutaneous innervation and skin structure. ChemoMorphometric Analysis (CMA) results demonstrated a significant reduction in small caliber intraepidermal nerve fiber (IENF) innervation, altered dermal vascular innervation, and aberrant analgesic/algesic neurochemical properties among epidermal keratinocytes, which are implicated in modulating sensory innervation. These comprehensive pathologic changes very closely resemble those observed from CMA of human skin biopsies collected from NP afflictions. The results indicate that the porcine PNT model is more appropriate for translational NP research compared with commonly utilized rodent models. Because the PNT model creates cutaneous innervation and keratinocyte immunolabeling alterations consistent with human NP conditions, use of this animal model for NP testing and treatment response characteristics will likely provide more realistic results to direct successful translation to humans.

8.
PLoS One ; 14(5): e0216527, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31107888

RESUMO

In addition to large plexiform neurofibromas (pNF), NF1 patients are frequently disfigured by cutaneous neurofibromas (cNF) and are often afflicted with chronic pain and itch even from seemingly normal skin areas. Both pNFs and cNF consist primarily of benign hyperproliferating nonmyelinating Schwann cells (nSC). While pNF clearly arise within deep nerves and plexuses, the role of cutaneous innervation in the origin of cNF and in chronic itch and pain is unknown. First, we conducted a comprehensive, multi-molecular, immunofluorescence (IF) analyses on 3mm punch biopsies from three separate locations in normal appearing, cNF-free skin in 19 NF1 patients and skin of 16 normal subjects. At least one biopsy in 17 NF1 patients had previously undescribed micro-lesions consisting of a small, dense cluster of nonpeptidergic C-fiber endings and the affiliated nSC consistently adjoining adnexal structures-dermal papillae, hair follicles, sweat glands, sweat ducts, and arterioles-where C-fiber endings normally terminate. Similar micro-lesions were detected in hind paw skin of mice with conditionally-induced SC Nf1-/- mutations. Hypothesizing that these microlesions were pre-cNF origins of cNF, we subsequently analyzed numerous overt, small cNF (s-cNF, 3-6 mm) and discovered that each had an adnexal structure at the epicenter of vastly increased nonpeptidergic C-fiber terminals, accompanied by excessive nSC. The IF and functional genomics assays indicated that neurturin (NTRN) and artemin (ARTN) signaling through cRET kinase and GFRα2 and GFRα3 co-receptors on the aberrant C-fiber endings and nSC may mutually promote the onset of pre-cNF and their evolution to s-cNF. Moreover, TrpA1 and TrpV1 receptors may, respectively, mediate symptoms of chronic itch and pain. These newly discovered molecular characteristics might be targeted to suppress the development of cNF and to treat chronic itch and pain symptoms in NF1 patients.


Assuntos
Fibras Nervosas Amielínicas/metabolismo , Neurofibroma Plexiforme/patologia , Neurofibromatose 1/patologia , Células de Schwann/metabolismo , Neoplasias Cutâneas/patologia , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fibras Nervosas Amielínicas/patologia , Proteínas do Tecido Nervoso/metabolismo , Neurofibroma Plexiforme/metabolismo , Neurofibromatose 1/imunologia , Neurturina/metabolismo , Células de Schwann/patologia , Transdução de Sinais , Neoplasias Cutâneas/metabolismo , Adulto Jovem
9.
Cephalalgia ; 37(14): 1350-1372, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27852962

RESUMO

Objective The interplay between neuronal innervation and other cell types underlies the physiological functions of the dura mater and contributes to pathophysiological conditions such as migraine. We characterized the extensive, but understudied, non-arterial diffuse dural innervation (DDI) of the rat and Rhesus monkey. Methods We used a comprehensive integrated multi-molecular immunofluorescence labeling strategy to extensively profile the rat DDI and to a lesser extent that of the Rhesus monkey. Results The DDI was distributed across a dense, pervasive capillary network and included free nerve endings of peptidergic CGRP-expressing C fibers that were closely intertwined with noradrenergic (NA) sympathetic fibers and thin-caliber nonpeptidergic "C/Aδ" fibers. These newly identified C/Aδ fibers were unmyelinated, like C fibers, but expressed NF200, usually indicative of Aδ fibers, and uniquely co-labeled for the CGRP co-receptor, RAMP1. Slightly-larger caliber NF200-positive fibers co-labeled for myelin basic protein (MBP) and terminated as unbranched corpuscular endings. The DDI peptidergic fibers co-labeled for the lectin IB4 and expressed presumably excitatory α1-adrenergic receptors, as well as inhibitory 5HT1D receptors and the delta opioid receptor (δOR), but rarely the mu opioid receptor (µOR). Labeling for P2X3, TRPV1, TRPA1, and parasympathetic markers was not observed in the DDI. Interpretation These results suggest potential functional interactions, wherein peptidergic DDI fibers may be activated by stress-related sympathetic activity, resulting in CGRP release that could be detected in the circulation. CGRP may also activate nonpeptidergic C/Aδ fibers that are likely mechanosensitive or polymodal, leading to activation of post-synaptic pain transmission circuits. The distribution of α1-adrenergic receptors, RAMP1, and the unique expression of the δOR on CGRP-expressing DDI fibers suggest strategies for functional modulation and application to therapy.


Assuntos
Dura-Máter/metabolismo , Dura-Máter/patologia , Transtornos de Enxaqueca/metabolismo , Transtornos de Enxaqueca/patologia , Fibras Nervosas Amielínicas/metabolismo , Fibras Nervosas Amielínicas/patologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/análise , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Capilares/química , Capilares/metabolismo , Capilares/patologia , Dura-Máter/química , Macaca mulatta , Masculino , Transtornos de Enxaqueca/terapia , Fibras Nervosas Amielínicas/química , Ratos , Ratos Sprague-Dawley , Proteína 1 Modificadora da Atividade de Receptores/análise , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/análise , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Especificidade da Espécie , Canais de Cátion TRPV/análise , Canais de Cátion TRPV/metabolismo , Resultado do Tratamento
10.
Rev Environ Health ; 31(2): 281-94, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27105483

RESUMO

Fibromyalgia syndrome (FMS) is a clinical disorder predominant in females with unknown etiology and medically unexplained symptoms (MUS), similar to other afflictions, including irritable bowel syndrome (IBS), chronic fatigue syndrome (CFS), post-traumatic stress disorder (PTSD), Gulf War illness (GFI), and others. External environmental stimuli drive behavior and impact physiologic homeostasis (internal environment) via autonomic functioning. These environments directly impact the individual affective state (mind), which feeds back to regulate physiology (body). FMS has emerged as a complex disorder with pathologies identified among neurotransmitter and enzyme levels, immune/cytokine functionality, cortical volumes, cutaneous innervation, as well as an increased frequency among people with a history of traumatic and/or emotionally negative events, and specific personality trait profiles. Yet, quantitative physical evidence of pathology or disease etiology among FMS has been limited (as with other afflictions with MUS). Previously, our group published findings of increased peptidergic sensory innervation associated with the arterio-venous shunts (AVS) in the glabrous hand skin of FMS patients, which provides a plausible mechanism for the wide-spread FMS symptomology. This review focuses on FMS as a model affliction with MUS to discuss the implications of the recently discovered peripheral innervation alterations, explore the role of peripheral innervation to central sensitization syndromes (CSS), and examine possible estrogen-related mechanisms through which external and internal environmental factors may contribute to FMS etiology and possibly other afflictions with MUS.


Assuntos
Exposição Ambiental/efeitos adversos , Fibromialgia/etiologia , Sintomas Inexplicáveis , Sistema Nervoso Central/fisiopatologia , Fibromialgia/patologia , Fibromialgia/fisiopatologia , Fibromialgia/psicologia , Homeostase , Humanos , Estilo de Vida , Sistema Nervoso Periférico/fisiopatologia , Fatores de Risco , Pele/irrigação sanguínea , Pele/inervação , Estresse Fisiológico , Estresse Psicológico/complicações , Estresse Psicológico/fisiopatologia , Ferimentos e Lesões/complicações , Ferimentos e Lesões/fisiopatologia
11.
Pain Rep ; 1(3)2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28210712

RESUMO

INTRODUCTION: Epidermal keratinocytes are increasingly recognized as active participants in the sensory transduction of itch and pain, processes known to involve primary afferent glutamatergic neurons. However the role of keratinocyte glutamate signaling in sensory functioning is not fully understood. Here, we present the observation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid type glutamate receptors (AMPAR) in epidermal keratinocytes. METHODS: Immunohistochemical and in situ hybridization analyses were conducted to assess the expression of AMPAR subunits in epidermal keratinocytes in mouse and human skin samples, and in organotypic cultures of human keratinocytes. In addition, RTPCR further confirmed the expression of GluA4-containing AMPAR in epidermal keratinocytes. RESULTS: We found prominent immunolabeling (IL) for the GluA4 subunit of AMPAR in keratinocytes of glabrous and hairy skin of mouse epidermis, as well as in human epidermal keratinocytes. RTPCR confirmed Gria4 transcript expression in epidermal mouse keratinocytes. In addition, expression of GRIA4 mRNA was confirmed in epidermal human keratinocytes by in situ hybridization. Immunohistochemical studies conducted in human skin biopsies from patients with atopic dermatitis (AD) and postherpetic neuralgia (PHN) demonstrate that keratinocyte expression of GluA4 can be altered under pathological conditions. Moreover, a decrease of GluA4 expression was observed in organotypic cultures of human keratinocytes after direct application of algogenic agents. CONCLUSIONS: We provide evidence that GluA4-containing AMPAR are expressed in epidermal keratinocytes, that human pruritic and painful dermatopathologies have alterations in the keratinocyte expression levels of GluA4-containing AMPAR, and that itch and pain producing substances can directly regulate their production in keratinocytes.

12.
J Neurosci ; 35(42): 14086-102, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26490852

RESUMO

The sensation of touch is initiated when fast conducting low-threshold mechanoreceptors (Aß-LTMRs) generate impulses at their terminals in the skin. Plasticity in this system is evident in the process of adaption, in which a period of diminished sensitivity follows prior stimulation. CaMKII is an ideal candidate for mediating activity-dependent plasticity in touch because it shifts into an enhanced activation state after neuronal depolarizations and can thereby reflect past firing history. Here we show that sensory neuron CaMKII autophosphorylation encodes the level of Aß-LTMR activity in rat models of sensory deprivation (whisker clipping, tail suspension, casting). Blockade of CaMKII signaling limits normal adaptation of action potential generation in Aß-LTMRs in excised skin. CaMKII activity is also required for natural filtering of impulse trains as they travel through the sensory neuron T-junction in the DRG. Blockade of CaMKII selectively in presynaptic Aß-LTMRs removes dorsal horn inhibition that otherwise prevents Aß-LTMR input from activating nociceptive lamina I neurons. Together, these consequences of reduced CaMKII function in Aß-LTMRs cause low-intensity mechanical stimulation to produce pain behavior. We conclude that, without normal sensory activity to maintain adequate levels of CaMKII function, the touch pathway shifts into a pain system. In the clinical setting, sensory disuse may be a critical factor that enhances and prolongs chronic pain initiated by other conditions. SIGNIFICANCE STATEMENT: The sensation of touch is served by specialized sensory neurons termed low-threshold mechanoreceptors (LTMRs). We examined the role of CaMKII in regulating the function of these neurons. Loss of CaMKII function, such as occurred in rats during sensory deprivation, elevated the generation and propagation of impulses by LTMRs, and altered the spinal cord circuitry in such a way that low-threshold mechanical stimuli produced pain behavior. Because limbs are protected from use during a painful condition, this sensitization of LTMRs may perpetuate pain and prevent functional rehabilitation.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Mecanorreceptores/fisiologia , Nociceptores/fisiologia , Limiar da Dor/fisiologia , Dor/fisiopatologia , Tato/genética , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Dependovirus/genética , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Gânglios Espinais/citologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hiperalgesia/fisiopatologia , Masculino , Mecanorreceptores/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/genética , Proteínas do Tecido Nervoso/metabolismo , Dor/etiologia , Doenças do Sistema Nervoso Periférico/complicações , Ratos , Ratos Sprague-Dawley , Privação Sensorial/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Pele/inervação
13.
Mol Pain ; 11: 26, 2015 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-25957174

RESUMO

BACKGROUND: The skin is a morphologically complex organ that serves multiple complementary functions, including an important role in thermoregulation, which is mediated by a rich vasculature that is innervated by sympathetic and sensory endings. Two autosomal dominant disorders characterized by episodes of severe pain, inherited erythromelalgia (IEM) and paroxysmal extreme pain disorder (PEPD) have been directly linked to mutations that enhance the function of sodium channel Nav1.7. Pain attacks are accompanied by reddening of the skin in both disorders. Nav1.7 is known to be expressed at relatively high levels within both dorsal root ganglion (DRG) and sympathetic ganglion neurons, and mutations that enhance the activity of Nav1.7 have been shown to have profound effects on the excitability of both cell-types, suggesting that dysfunction of sympathetic and/or sensory fibers, which release vasoactive peptides at skin vasculature, may contribute to skin reddening in IEM and PEPD. RESULTS: In the present study, we demonstrate that smooth muscle cells of cutaneous arterioles and arteriole-venule shunts (AVS) in the skin express sodium channel Nav1.7. Moreover, Nav1.7 is expressed by endothelial cells lining the arterioles and AVS and by sensory and sympathetic fibers innervating these vascular elements. CONCLUSIONS: These observations suggest that the activity of mutant Nav1.7 channels in smooth muscle cells of skin vasculature and innervating sensory and sympathetic fibers contribute to the skin reddening and/or pain in IEM and PEPD.


Assuntos
Axônios/metabolismo , Endotélio/metabolismo , Células Musculares/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Pele/inervação , Pele/metabolismo , Eritromelalgia/genética , Gânglios Espinais/metabolismo , Humanos , Mutação/genética
14.
Brain Behav Evol ; 85(3): 170-88, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26022696

RESUMO

Mammalian tactile hairs are commonly found on specific, restricted regions of the body, but Florida manatees represent a unique exception, exhibiting follicle-sinus complexes (FSCs, also known as vibrissae or tactile hairs) on their entire body. The orders Sirenia (including manatees and dugongs) and Hyracoidea (hyraxes) are thought to have diverged approximately 60 million years ago, yet hyraxes are among the closest relatives to sirenians. We investigated the possibility that hyraxes, like manatees, are tactile specialists with vibrissae that cover the entire postfacial body. Previous studies suggested that rock hyraxes possess postfacial vibrissae in addition to pelage hair, but this observation was not verified through histological examination. Using a detailed immunohistochemical analysis, we characterized the gross morphology, innervation and mechanoreceptors present in FSCs sampled from facial and postfacial vibrissae body regions to determine that the long postfacial hairs on the hyrax body are in fact true vibrissae. The types and relative densities of mechanoreceptors associated with each FSC also appeared to be relatively consistent between facial and postfacial FSCs. The presence of vibrissae covering the hyrax body presumably facilitates navigation in the dark caves and rocky crevices of the hyrax's environment where visual cues are limited, and may alert the animal to predatory or conspecific threats approaching the body. Furthermore, the presence of vibrissae on the postfacial body in both manatees and hyraxes indicates that this distribution may represent the ancestral condition for the supraorder Paenungulata.


Assuntos
Vias Aferentes/fisiologia , Procaviídeos/anatomia & histologia , Vibrissas/inervação , Vias Aferentes/ultraestrutura , Animais , Face/inervação , Feminino , Masculino , Microscopia Eletrônica de Varredura , Boca/inervação , Proteínas do Tecido Nervoso/metabolismo , Nervos Periféricos/fisiologia , Nervos Periféricos/ultraestrutura
15.
Pain Ther ; 4(1): 33-50, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25630651

RESUMO

In Part One of this two-part series, we discussed skin physiology and anatomy as well as generalities concerning topical analgesics. This modality of therapy has lesser side effects and drug-drug interactions, and patients tolerate this form of therapy better than many oral options. Unfortunately, this modality is not used as often as it could be in chronic pain states, such as that from neuropathic pain. Part Two discusses specific therapies, local anesthetics, and other drugs, as well as how a clinician might use specific aspects of a patient's neuropathic pain presentation to help guide them in the selection of a topical agent.

16.
Pain Ther ; 4(1): 17-32, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25627665

RESUMO

Chronic pain is a complex disorder with multiple etiologies for which the pathologic mechanisms are still largely unknown, making effective treatment a difficult clinical task. Achieving pain relief along with improved function and quality of life is the primary goal of pain clinicians; however, most patients and healthcare professionals consider 30% pain improvement to be clinically significant-a success level that would be unacceptable in other areas of medicine. Furthermore, patients with chronic pain frequently have multiple comorbidities, including depression and sleep apnea, and most have seen several physicians prior to being seen by a pain specialist, have more than three specific pain generators, and are taking multiple medications. The addition of further oral medications to control pain increases the risk of drug-drug interactions and side effects. However, topical analgesics have the advantage of local application with limited systemic levels of drug. Topical therapies benefit from reduced side effects, lower risk of drug-drug interactions, better patient acceptability/compliance, and improved tolerability. This two-part paper is a review of topical analgesics and their potential role in the treatment of chronic pain.

17.
Pain Med ; 14(6): 895-915, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23691965

RESUMO

OBJECTIVE: To determine if peripheral neuropathology exists among the innervation of cutaneous arterioles and arteriole-venule shunts (AVS) in fibromyalgia (FM) patients. SETTING: Cutaneous arterioles and AVS receive a convergence of vasoconstrictive sympathetic innervation, and vasodilatory small-fiber sensory innervation. Given our previous findings of peripheral pathologies in chronic pain conditions, we hypothesized that this vascular location may be a potential site of pathology and/or serotonergic and norepinephrine reuptake inhibitors (SNRI) drug action. SUBJECTS: Twenty-four female FM patients and nine female healthy control subjects were enrolled for study, with 14 additional female control subjects included from previous studies. AVS were identified in hypothenar skin biopsies from 18/24 FM patient and 14/23 control subjects. METHODS: Multimolecular immunocytochemistry to assess different types of cutaneous innervation in 3 mm skin biopsies from glabrous hypothenar and trapezius regions. RESULTS: AVS had significantly increased innervation among FM patients. The excessive innervation consisted of a greater proportion of vasodilatory sensory fibers, compared with vasoconstrictive sympathetic fibers. In contrast, sensory and sympathetic innervation to arterioles remained normal. Importantly, the sensory fibers express α2C receptors, indicating that the sympathetic innervation exerts an inhibitory modulation of sensory activity. CONCLUSIONS: The excessive sensory innervation to the glabrous skin AVS is a likely source of severe pain and tenderness in the hands of FM patients. Importantly, glabrous AVS regulate blood flow to the skin in humans for thermoregulation and to other tissues such as skeletal muscle during periods of increased metabolic demand. Therefore, blood flow dysregulation as a result of excessive innervation to AVS would likely contribute to the widespread deep pain and fatigue of FM. SNRI compounds may provide partial therapeutic benefit by enhancing the impact of sympathetically mediated inhibitory modulation of the excess sensory innervation.


Assuntos
Arteríolas/inervação , Arteríolas/metabolismo , Fibromialgia/metabolismo , Neuropeptídeos/metabolismo , Pele/inervação , Vênulas/inervação , Vênulas/metabolismo , Adulto , Vias Aferentes/metabolismo , Vias Aferentes/patologia , Idoso , Feminino , Fibromialgia/patologia , Mãos , Humanos , Pessoa de Meia-Idade , Pele/irrigação sanguínea , Pele/metabolismo , Adulto Jovem
18.
Pain ; 154(10): 2227-2233, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23719573

RESUMO

Postherpetic neuralgia (PHN) is a common complication after herpes zoster (HZ). Subjects who completed a longitudinal observational 6-month study (4 visits) of the natural history of HZ were recontacted for 2 additional follow-up visits that included pain and sensory symptom assessment, quantitative sensory testing, capsaicin response test, and 3-mm punch skin biopsies in HZ-affected, mirror-image, and control skin sites. Forty-three subjects (14 with PHN at 6 months) of the original 94 subjects in the cohort were comprehensively assessed at a median 3.9 years after HZ onset (visit 5), and 10 subjects underwent a final assessment at a median 7.7 years after HZ onset (visit 6). At 3.9 years, none of the 29 subjects who had been pain free at 6 months had a recurrence of pain. Only 2 of the 14 subjects with PHN at 6 months still had pain at 3.9 years. One subject with PHN at 6 months was free of symptoms at 3.9 years but had very mild pain at 7.7 years. Sensory function continued on a path toward normalization, but was still abnormal in many subjects, especially those who met criteria for PHN at 6 months. Even at 7.7 years, reinnervation of HZ-affected skin was not apparent.


Assuntos
Herpes Zoster/diagnóstico , Herpes Zoster/epidemiologia , Medição da Dor/tendências , Dor/diagnóstico , Dor/epidemiologia , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Seguimentos , Herpes Zoster/virologia , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Dor/virologia , Medição da Dor/métodos
19.
PLoS One ; 8(2): e56744, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23457608

RESUMO

Cutaneous ATP release plays an important role in both epidermal stratification and chronic pain, but little is known about ATP release mechanisms in keratinocytes that comprise the epidermis. In this study, we analyzed ATP release from cultured human neonatal keratinocytes briefly exposed to air, a process previously demonstrated to trigger ATP release from these cells. We show that exposing keratinocytes to air by removing media for 15 seconds causes a robust, long-lasting ATP release. This air-stimulated ATP release was increased in calcium differentiated cultures which showed a corresponding increase in connexin 43 mRNA, a major component of keratinocyte hemichannels. The known connexin hemichannel inhibitors 1-octanol and carbenoxolone both significantly reduced air-stimulated ATP release, as did two drugs traditionally used as ABC transporter inhibitors (glibenclamide and verapamil). These same 4 inhibitors also prevented an increase in the uptake of a connexin permeable dye induced by air exposure, confirming that connexin hemichannels are open during air-stimulated ATP release. In contrast, activity of the MDR1 ABC transporter was reduced by air exposure and the drugs that inhibited air-stimulated ATP release had differential effects on this transporter. These results indicate that air exposure elicits non-vesicular release of ATP from keratinocytes through connexin hemichannels and that drugs used to target connexin hemichannels and ABC transporters may cross-inhibit. Connexins represent a novel, peripheral target for the treatment of chronic pain and dermatological disease.


Assuntos
Trifosfato de Adenosina/metabolismo , Ar , Conexinas/metabolismo , Queratinócitos/metabolismo , 1-Octanol/farmacologia , Trifosfato de Adenosina/deficiência , Carbenoxolona/farmacologia , Dor Crônica/metabolismo , Conexinas/antagonistas & inibidores , Células Epidérmicas , Homeostase/efeitos dos fármacos , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Dermatopatias/metabolismo
20.
Eur J Neurosci ; 34(10): 1529-41, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22103411

RESUMO

Touch sensation is mediated by specific subtypes of sensory neurons which develop in a hierarchical process from common early progenitor neurons, but the molecular mechanism that underlies diversification of touch-sensitive mechanoreceptive neurons is not fully known. Here, we use genetically manipulated mice to examine whether the transcription factor short stature homeobox 2 (Shox2) participates in the acquisition of neuronal subtypes conveying touch sensation. We show that Shox2 encodes the development of category I low-threshold mechanoreceptive neurons in glabrous skin, i.e. discriminative touch-sensitive neurons which form innervations of epidermal Merkel cell and Meissner corpuscles. In contrast, other sensory fiber endings, including those innervating Pacinian corpuscles, are not dependent on Shox2. Shox2 is expressed in neurons of most or all classes of sensory neurons at early embryonic stages and is later confined to touch-sensitive neurons expressing Ret and/or TrkB. Conditional deletion of Shox2 and analysis of Runx3(-/-);Bax(-/-) mutant mice reveals that Runx3 is suppressing Shox2 while Shox2 is necessary for TrkB expression, and that these interactions are necessary for diversification of TrkB(+) and TrkC(+) mechanoreceptive neurons. In particular, development of TrkB(+)/Ret(+) and TrkB(+)/Ret(-) touch-sensitive neurons is critically dependent on Shox2. Consistently, Shox2 conditional mutant mice demonstrate a dramatic impairment of light touch responses. These results show that Shox2 is required for specification of a subclass of TrkB(+) sensory neurons which convey the sensation of discriminative touch arising from stimuli of the skin.


Assuntos
Proteínas de Homeodomínio/metabolismo , Células Receptoras Sensoriais/fisiologia , Tato/fisiologia , Animais , Comportamento Animal/fisiologia , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Feminino , Gânglios Espinais/citologia , Proteínas de Homeodomínio/genética , Humanos , Masculino , Mecanorreceptores/citologia , Mecanorreceptores/fisiologia , Mecanotransdução Celular/fisiologia , Células de Merkel/citologia , Células de Merkel/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Nociceptores/citologia , Nociceptores/fisiologia , Corpúsculos de Pacini/citologia , Corpúsculos de Pacini/fisiologia , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Receptor trkB/genética , Receptor trkB/metabolismo , Receptor trkC/genética , Receptor trkC/metabolismo , Células Receptoras Sensoriais/citologia , Percepção do Tato/fisiologia , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...