Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cancer Res ; 66(17): 8455-61, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16951156

RESUMO

The development of risk-directed treatment protocols over the last 25 years has resulted in an increase in the survival rates of children treated for cancer. As a consequence, there is a growing population of pediatric cancer survivors in which the long-term genotoxic effects of chemotherapy is unknown. We previously reported that children treated for acute lymphocytic leukemia have significantly elevated somatic mutant frequencies at the hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene in their peripheral T cells. To understand the molecular etiology of the increase in mutant frequencies following chemotherapy, we investigated the HPRT mutation spectra and the extent of clonal proliferation in 562 HPRT T cell mutant isolates of 87 blood samples from 47 subjects at diagnosis, during chemotherapy, and postchemotherapy. We observed a significant increase in the proportion of CpG transitions following treatment (13.6-23.3%) compared with healthy controls (4.0%) and a significant decrease in V(D)J-mediated deletions following treatment (0-6.8%) compared with healthy controls (17.0%). There was also a significant change in the class type percentage of V(D)J-mediated HPRT deletions following treatment. In addition, there was a >5-fold increase in T cell receptor gene usage-defined mean clonal proliferation from diagnosis compared with the completion of chemotherapeutic intervention. These data indicate that unique genetic alterations and extensive clonal proliferation are occurring in children following treatment for acute lymphocytic leukemia that may influence long-term risks for multifactorial diseases, including secondary cancers.


Assuntos
Linfoma de Burkitt/genética , Linfoma de Burkitt/patologia , Hipoxantina Fosforribosiltransferase/genética , Mutação , Polimorfismo de Nucleotídeo Único , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Linfoma de Burkitt/sangue , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/enzimologia , Criança , Pré-Escolar , Clonagem Molecular , Feminino , Humanos , Hipoxantina Fosforribosiltransferase/sangue , Masculino , Reação em Cadeia da Polimerase , Receptores de Antígenos de Linfócitos T/genética
3.
Cancer Res ; 64(13): 4464-71, 2004 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15231655

RESUMO

The survival rates of children treated for cancer have dramatically increased after the development of standardized multiple-modality treatment protocols. As a result, there is a rapidly growing population of pediatric cancer survivors in which the long-term genotoxic effects of chemotherapeutic intervention is unknown. To study the genotoxic effects of antineoplastic treatment in children, we performed a comparative analysis of the changes in the frequency of somatic mutations (Mfs) at the hypoxanthine-guanine phosphoribosyltransferase (HPRT)-reporter gene in children treated for acute lymphocytic leukemia (ALL). We measured HPRT Mfs from 130 peripheral blood samples from 45 children with ALL (13, low risk; 22, standard risk; and 10, high risk) from the time of diagnosis, as well as during and after the completion of therapy. We observed a significant increase in mean HPRT Mfs during each phase of therapy (diagnosis, 1.4 x 10(-6); consolidation, 52.1 x 10(-6); maintenance, 93.2 x 10(-6); and off-therapy, 271.7 x 10(-6)) that were independent of the risk group treatment protocol used. This 200-fold increase in mean somatic Mf remained elevated years after the completion of therapy. We did not observe a significant difference in the genotoxicity of each risk group treatment modality despite differences in the compositional and clinical toxicity associated with these treatment protocols. These findings suggest that combination chemotherapy used to treat children with ALL is quite genotoxic, resulting in an increased somatic mutational load that may result in an elevated risk for the development of multi-factorial diseases, in particular second malignancies.


Assuntos
Antineoplásicos/efeitos adversos , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Adolescente , Adulto , Antineoplásicos/uso terapêutico , Criança , Pré-Escolar , Feminino , Genes Reporter , Humanos , Hipoxantina Fosforribosiltransferase/genética , Lactente , Estudos Longitudinais , Masculino , Análise de Regressão , Fatores de Risco
4.
Environ Mol Mutagen ; 42(1): 44-9, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12874812

RESUMO

The link between exposure to environmental mutagens and the development of cancer is well established. Yet there is a paucity of data on the relationship between gene-environment interactions and the mechanisms associated with the somatic mutational events involved with malignant transformation, especially in children. To gain insight into somatic mutational mechanisms in children who develop cancer, we determined the background mutant frequency (Mf) in the hypoxanthine phosphoribosyl transferase (HPRT) reporter gene of peripheral blood lymphocytes from pediatric cancer patients at the time of diagnosis and prior to therapeutic intervention. We studied 23 children with hematologic malignancies and 31 children with solid tumors prior to initial therapeutic intervention. Children with solid tumors, specifically sarcomas, and Hodgkin's disease were significantly older and had elevated HPRT Mfs (6.1 x 10(-6) and 3.7 x 10(-6), respectively) at the time of diagnosis, compared to normal controls (2.3 x 10(-6)) and other pediatric tumor groups including children with acute lymphocytic leukemia and non-Hodgkin's lymphoma (ALL/NHL, 1.7 x 10(-6)), central nervous system tumors (CNS, 3.6 x 10(-6)), and neuroblastoma (1.9 x 10(-6)). Of importance is that the significant differences observed in HPRT Mfs between these groups no longer existed after correcting for the effects of age. These data demonstrate that in children who develop cancer there appears to be no significant increase in background HPRT Mf that would indicate significant exposure to genotoxic chemicals or an underlying DNA repair defect resulting in genomic instability. In addition, these data demonstrate the importance of correcting for the effect of age when comparing the frequency of somatic mutations in children and should provide baseline data for future longitudinal biomonitoring studies on the genetic effects of chemotherapy in children treated for cancer.


Assuntos
Hipoxantina Fosforribosiltransferase/genética , Mutação , Neoplasias/genética , Adolescente , Fatores Etários , Criança , Pré-Escolar , Feminino , Marcadores Genéticos/genética , Humanos , Lactente , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...