Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mar Environ Res ; 146: 101-108, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30929836

RESUMO

Assessing the status of important carbon sinks such as seagrass meadows is of primary importance when dealing with potential climate change mitigation strategies. This study examined plant and sediment properties in seagrass meadows (Cymodocea nodosa (Ucria) Asch.) from two high pCO2-low pH Mediterranean vent systems, located at Milos (Greece) and Vulcano (Italy) Islands, providing insights on carbon storage potential in future acidified oceans. Contrary to what has been suggested, carbon content (both inorganic and organic) and its surficial accumulation decreased at high pCO2-low pH in comparison with controls. The decrease in inorganic carbon may result from the higher solubility of carbonates due to the more acidic conditions. At Vulcano, the seagrass properties (e.g., leaf area, biomass) appeared negatively affected by environmental conditions at high pCO2-low pH conditions and this may have had a detrimental effect on the organic carbon content and accumulation. At Milos, organic carbon decreased at high pCO2-low pH conditions, despite the increase in seagrass aboveground biomass, leaf length and area, probably as a consequence of site-specific features, which need further investigation and may include both biotic and abiotic factors (e.g., oligotrophic conditions, decreased sedimentation rate and input of allochthonous material). Results suggest that, in contrast to previous predictions based exclusively on the expected positive response of seagrasses to ocean acidification, carbon storage capacity of the seagrass C. nodosa may not increase at high pCO2-low pH conditions. This study emphasizes the need to investigate further the potential alteration in the climate mitigation service delivered by seagrass meadows in acidified oceans.


Assuntos
Sequestro de Carbono , Sedimentos Geológicos/química , Plantas Tolerantes a Sal/química , Água do Mar/química , Carbono/análise , Dióxido de Carbono/análise , Grécia , Concentração de Íons de Hidrogênio , Itália , Oceanos e Mares
2.
Mar Biol ; 163(10): 211, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27729710

RESUMO

We are starting to understand the relationship between metabolic rate responses and species' ability to respond to exposure to high pCO2. However, most of our knowledge has come from investigations of single species. The examination of metabolic responses of closely related species with differing distributions around natural elevated CO2 areas may be useful to inform our understanding of their adaptive significance. Furthermore, little is known about the physiological responses of marine invertebrate juveniles to high pCO2, despite the fact they are known to be sensitive to other stressors, often acting as bottlenecks for future species success. We conducted an in situ transplant experiment using juveniles of isopods found living inside and around a high pCO2 vent (Ischia, Italy): the CO2 'tolerant' Dynamene bifida and 'sensitive' Cymodoce truncata and Dynamene torelliae. This allowed us to test for any generality of the hypothesis that pCO2 sensitive marine invertebrates may be those that experience trade-offs between energy metabolism and cellular homoeostasis under high pCO2 conditions. Both sensitive species were able to maintain their energy metabolism under high pCO2 conditions, but in C. truncata this may occur at the expense of [carbonic anhydrase], confirming our hypothesis. By comparison, the tolerant D. bifida appeared metabolically well adapted to high pCO2, being able to upregulate ATP production without recourse to anaerobiosis. These isopods are important keystone species; however, given they differ in their metabolic responses to future pCO2, shifts in the structure of the marine ecosystems they inhabit may be expected under future ocean acidification conditions.

3.
J Exp Biol ; 218(Pt 14): 2148-51, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25987731

RESUMO

Species distributions and ecology can often be explained by their physiological sensitivity to environmental conditions. Whilst we have a relatively good understanding of how these are shaped by temperature, for other emerging drivers, such as PCO2  we know relatively little. The marine polychaete Sabella spallanzanii increases its metabolic rate when exposed to high PCO2  conditions and remains absent from the CO2 vent of Ischia. To understand new possible pathways of sensitivity to CO2 in marine ectotherms, we examined the metabolic plasticity of S. spallanzanii exposed in situ to elevated PCO2  by measuring fundamental metabolite and carbonic anhydrase concentrations. We show that whilst this species can survive elevated PCO2  conditions in the short term, and exhibits an increase in energy metabolism, this is accompanied by a significant decrease in carbonic anhydrase concentration. These homeostatic changes are unlikely to be sustainable in the longer term, indicating S. spallanzanii may struggle with future high PCO2  conditions.


Assuntos
Dióxido de Carbono/metabolismo , Anidrases Carbônicas/metabolismo , Poliquetos/metabolismo , Aclimatação , Trifosfato de Adenosina/metabolismo , Animais , Metabolismo Energético , Homeostase , Concentração de Íons de Hidrogênio , Mar Mediterrâneo , Água do Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA