Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Invest Ophthalmol Vis Sci ; 65(1): 42, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38271187

RESUMO

Purpose: Pigmentation in uveal melanoma is associated with increased malignancy and is known as a barrier for photodynamic therapy. We investigated the role of pigmentation in tumor behavior and the response to light-activated Belzupacap sarotalocan (Bel-sar) treatment in a pigmented (wild type) and nonpigmented (tyrosinase knock-out [TYR knock-out]) cell line in vitro and in a murine model. Methods: The B16F10 (TYR knock-out) was developed using CRISPR/Cas9. After the treatment with light-activated Bel-sar, cytotoxicity and exposure of damage-associated molecular patterns (DAMPs) were measured by flow cytometry. Treated tumor cells were co-cultured with bone marrow-derived macrophages (BMDMs) and dendritic cells (DCs) to assess phagocytosis and activation. Both cell lines were injected subcutaneously in syngeneic C57BL/6 mice. Results: Knock-out of the tyrosinase gene in B16F10 led to loss of pigmentation and immature melanosomes. Pigmented tumors contained more M1 and fewer M2 macrophages compared with amelanotic tumors. Bel-sar treatment induced near complete cell death, accompanied with enhanced exposure of DAMPs in both cell lines, resulting in enhanced phagocytosis of BMDMs and maturation of DCs. Bel-sar treatment induced a shift to M1 macrophages and delayed tumor growth in both in vivo tumor models. Following treatment, especially the pigmented tumors and their draining lymph nodes contained IFN-gamma positive CD8+T cells. Conclusions: Pigmentation influenced the type of infiltrating macrophages in the tumor, with more M1 macrophages in pigmented tumors. Belzupacap sarotalocan treatment induced immunogenic cell death and tumor growth delay in pigmented as well as in nonpigmented models and stimulated M1 macrophage influx in both models.


Assuntos
Melanoma , Animais , Camundongos , Melanoma/genética , Monofenol Mono-Oxigenase/metabolismo , Camundongos Endogâmicos C57BL , Macrófagos/metabolismo , Pigmentação
2.
Invest Ophthalmol Vis Sci ; 64(7): 10, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37272766

RESUMO

Purpose: The virus-like drug conjugate belzupacap sarotalocan (AU-011), currently under clinical investigation for first-line treatment of primary uveal melanoma (UM), shows enhanced tumor specificity by targeting heparan sulfate proteoglycans (HSPG). Such a treatment may potentially lead to systemic immune responses. We studied the potential of AU-011 treatment to induce immunogenic cell death as the first step to induce systemic immunity. Methods: We determined binding and uptake of AU-011 in ten primary and metastatic UM cell lines. The subcellular location of AU-011 was assessed by fluorescence microscopy. Following light activation (wavelength 690 nm) of AU-011, the half-maximal effective concentration (EC50) of AU-011 treatment and exposure of damage-associated molecular patterns (DAMPs) were assessed using flow cytometry. DAMPs were measured by RNAseq. Results: Fluorescence microscopy revealed most of the AU-011 was present in the cytoplasm. AU-011 binding and uptake by UM cells increased over time, with a lower uptake in BAP1-negative than in BAP1-positive cell lines. AU-011 activation induced cell death across all UM cell lines with EC50 values at picomolar concentrations. The AU-011 concentration and total light dose (J/cm2) were the most important parameters for the observed cytotoxicity. Finally, light-activated AU-011 induced exposure of DAMPs calreticulin (CRT) and HSP90. CRT exposure by light-activated AU-011 as well as CRT RNA exposure were lower in BAP1-negative compared to BAP1-positive UM cell lines. Conclusions: AU-011 treatment at low picomolar range induces immunogenic cell death in all 10 UM cell lines. The in vitro cytotoxicity was accompanied by exposure of DAMPs (HSP90 and CRT), suggesting AU-011 may contribute to the development of systemic immunity and be a suitable candidate for combination with immunotherapy in vivo. AU-011 treatment was more effective against BAP1-positive cell lines, with a lower EC50 and higher CRT exposure.


Assuntos
Melanoma , Neoplasias Uveais , Humanos , Neoplasias Uveais/genética , Melanoma/genética , Imunização , Técnicas In Vitro , Ubiquitina Tiolesterase/genética , Proteínas Supressoras de Tumor
3.
Cancer Immunol Immunother ; 72(7): 2405-2422, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36997666

RESUMO

Metastases remain the leading cause of cancer-related death worldwide. Therefore, improving the treatment efficacy against such tumors is essential to enhance patient survival. AU-011 (belzupacap sarotalocan) is a new virus-like drug conjugate which is currently in clinical development for the treatment of small choroidal melanoma and high-risk indeterminate lesions in the eye. Upon light activation, AU-011 induces rapid necrotic cell death which is pro-inflammatory and pro-immunogenic, resulting in an anti-tumor immune response. As AU-011 is known to induce systemic anti-tumor immune responses, we investigated whether this combination therapy would also be effective against distant, untreated tumors, as a model for treating local and distant tumors by abscopal immune effects. We compared the efficacy of combining AU-011 with several different checkpoint blockade antibodies to identify optimal treatment regimens in an in vivo tumor model. We show that AU-011 induces immunogenic cell death through the release and exposure of damage-associated molecular patterns (DAMPs), resulting in the maturation of dendritic cells in vitro. Furthermore, we show that AU-011 accumulates in MC38 tumors over time and that ICI enhances the efficacy of AU-011 against established tumors in mice, resulting in complete responses for specific combinations in all treated animals bearing a single MC38 tumor. Finally, we show that AU-011 and anti-PD-L1/anti-LAG-3 antibody treatment was an optimal combination in an abscopal model, inducing complete responses in approximately 75% of animals. Our data show the feasibility of combining AU-011 with PD-L1 and LAG-3 antibodies for the treatment of primary and distant tumors.


Assuntos
Inibidores de Checkpoint Imunológico , Melanoma , Animais , Camundongos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Modelos Animais de Doenças , Melanoma/tratamento farmacológico , Terapia Combinada , Fármacos Fotossensibilizantes , Linhagem Celular Tumoral
4.
Transl Vis Sci Technol ; 8(6): 47, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31879569

RESUMO

PURPOSE: Nonarteritic anterior ischemic optic neuropathy (NAION) is the leading cause of sudden optic nerve-related vision loss currently without effective treatment. We evaluated the neuroprotective potential of ocular (topical) delivery of trabodenoson, a selective A1 receptor mimetic, in a rodent model of NAION (rNAION). METHODS: Daily topical delivery of 3% trabodenoson or vehicle administered in both eyes 3 days prior to rNAION induction and for 21 days post induction. Retinal appearance and optic nerve head (ONH) edema was evaluated using spectral-domain optical coherence tomography (SD-OCT). Retinal function was evaluated before and after induction by ganzfeld electroretinography (ERG). Brn3a(+) retinal ganglion cells (RGCs) were quantified by stereology. Axonal ultrastructure was evaluated by electron microscopy. RESULTS: Trabodenoson-treated eyes had significantly reduced optic nerve (ON) edema compared with vehicle-treated eyes (ANOVA, P < 0.05). Electrophysiologically, there was a nonsignificant trend toward b-wave and oscillatory potential (OP) preservation in the trabodenoson-treated eyes. RGC counts were higher in trabodenoson-treated eyes compared to vehicle (74% versus 47% of the contralateral eye; two-tailed t-test; P = 0.01), as were ON axons. No overt morphologic differences in cell inflammation were observed between vehicle- and trabodenoson-treated ONHs, but trabodenoson-treated ONHs revealed increased expression of astrocyte-related neuroprotective responses. CONCLUSIONS: Trabodenoson preserves RGCs in the rodent NAION model. While previous clinical trials focused on trabodenoson's ocular antihypertensive effect, our data suggest trabodenoson's primary target may be both the retina and ONH. Selective adenosine A1 agonists may prove an appropriate neuroprotective adjunctive for ischemia-related ON diseases such as NAION and glaucoma. TRANSLATIONAL RELEVANCE: RGC and ON neuroprotection in ischemic neuropathies may be achievable by topical administration of A1 adenosine agonists rather than by simply relying on intraocular pressure reduction.

5.
Invest Ophthalmol Vis Sci ; 59(7): 3088-3093, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30025146

RESUMO

Purpose: To determine the efficacy of trabodenoson, an adenosine mimetic with highly selective adenosine A1 receptor binding properties, in a preclinical mouse model for dry-eye disease. Methods: Dry-eye disease was induced in adult male C57BL/6 mice using a combination of desiccating environment and transdermal administration of scopolamine. Mice were treated concurrently and twice daily with either vehicle, 6% trabodenoson, or 0.05% cyclosporine (Restasis). Efficacy (P < 0.05 versus vehicle) was determined by clinical assessment of dry-eye symptoms using corneal fluorescein staining and tear volumes and histopathologically by quantifying lacrimal gland pathology and conjunctival goblet cells. Results: Twice-daily topical (ocular) administration of trabodenoson increased tear levels and reduced corneal fluorescein staining (P < 0.05) as compared with vehicle-treated eyes in a mouse model of dry-eye disease. Furthermore, significant infiltration of immune cells in the lacrimal gland and reduced number of mucin-producing conjunctival goblet cells were noted in both untreated and vehicle-treated eyes. Comparatively, trabodenoson treatment significantly reduced lacrimal gland infiltration and increased the number of goblet cells (P < 0.05 for both versus vehicle). These trabodenoson-related effects on lacrimal gland pathology and goblet cells were similar to or better than the effects observed with cyclosporine treatment. Conclusions: Topical ocular delivery of trabodenoson significantly improves the clinical and histopathological signs associated with dry-eye disease in mice. This improvement appears to be related to anti-inflammatory effects from targeting adenosine signaling and represents a novel therapeutic approach to develop for the management of dry-eye disease.


Assuntos
Modelos Animais de Doenças , Síndromes do Olho Seco/tratamento farmacológico , Ceratoconjuntivite Seca/tratamento farmacológico , Nitratos/uso terapêutico , Agonistas do Receptor Purinérgico P1/uso terapêutico , Purinas/uso terapêutico , Administração Oftálmica , Animais , Túnica Conjuntiva/efeitos dos fármacos , Células Caliciformes/efeitos dos fármacos , Aparelho Lacrimal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Lágrimas/fisiologia , Resultado do Tratamento
6.
J Ocul Pharmacol Ther ; 32(8): 548-554, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27046445

RESUMO

PURPOSE: To investigate the safety, tolerability, and pharmacokinetics of trabodenoson, a highly selective adenosine mimetic targeting the adenosine A1 receptor. METHODS: In Part 1, 60 healthy adult volunteers were randomized to 14 days of twice-daily topical monocular application of placebo or trabodenoson (200, 400, 800, 1,600, 2,400, or 3,200 µg). In Part 2, 10 subjects were randomized to placebo or 8 escalating doses of bilateral trabodenoson (total daily doses: 1,800-6,400 µg). RESULTS: The incidence of treatment-related adverse events in Part 1 was similar in the trabodenoson (27.8%) and placebo (25.0%) groups. Most were mild in intensity. The most common adverse events (AEs) for trabodenoson and placebo were headache (25.0% vs. 33%, respectively) and eye pain (11.1% vs. 4.2%, respectively). Ocular AEs were infrequent (16.7% and 17.9%, respectively), were self-limited, lasted <24 h, and were typically mild in intensity. The most common ocular AE was eye pain (9.5% and 3.6%, respectively), with a single observation of ocular hyperemia (200 µg trabodenoson). Trabodenoson was rapidly absorbed [median time to maximum concentration (tmax): ∼0.08 to 0.27 h] and eliminated (t½: 0.48-2.0 h), with no evidence of drug accumulation. Systemic exposure to topical trabodenoson was dose related but not dose proportional, with a plateau effect at doses ≥2,400 mg per eye. No clinically significant treatment-related systemic AEs were observed, and increasing systemic exposure had no effect on heart rate or blood pressure. CONCLUSIONS: Ocular doses of trabodenoson up to 3,200 µg per eye were safe and well tolerated in the eye and resulted in no detectable systemic effects in healthy adult volunteers.


Assuntos
Voluntários Saudáveis , Adulto , Idoso , Relação Dose-Resposta a Droga , Método Duplo-Cego , Olho/fisiopatologia , Humanos , Pessoa de Meia-Idade , Hipertensão Ocular/induzido quimicamente
7.
J Ocul Pharmacol Ther ; 32(8): 555-562, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27002298

RESUMO

PURPOSE: To evaluate the safety and ocular hypotensive efficacy of 4 trabodenoson doses administered twice daily over 14 or 28 days in subjects with ocular hypertension or primary open-angle glaucoma (POAG). METHODS: In this multicenter, randomized, double-masked, placebo-controlled, dose-escalation Phase 2 study, patients received unilateral topical twice-daily trabodenoson (50, 100, or 200 mcg) or placebo for 14 days, or 500 mcg trabodenoson or placebo for 28 days. Ocular and systemic safety and tolerability were assessed by examinations, clinical and laboratory studies. Intraocular pressure (IOP) was assessed using Goldmann tonometry. RESULTS: Trabodenoson was well tolerated; no clinically meaningful ocular or systemic side effects were identified. Trabodenoson produced a dose-dependent IOP reduction. IOP reductions in the 500 mcg group were significantly greater than placebo at all time points at Day 28. Mean IOP reductions from diurnal baseline ranged from -3.5 to -5.0 mmHg with a mean change of -4.1 mmHg in the 500 mcg group compared -1.0 to -2.5 mmHg with a mean change of -1.6 mmHg for the placebo group, and the Day 28 drop was significantly greater than at Day 14 (P = 0.0163) indicating improvement in IOP lowering with longer treatment time. IOP remained significantly reduced 24 h after the final 500 mcg dose (P = 0.048). CONCLUSION: Twice-daily ocular doses of trabodenoson, from 50 to 500 mcg, were well tolerated and showed a dose-related decrease in IOP that was statistically significant and clinically relevant at 500 mcg in patients with ocular hypertension or POAG.


Assuntos
Glaucoma de Ângulo Aberto/tratamento farmacológico , Nitratos/efeitos adversos , Nitratos/farmacocinética , Hipertensão Ocular/tratamento farmacológico , Purinas/efeitos adversos , Purinas/farmacocinética , Adolescente , Adulto , Idoso , Relação Dose-Resposta a Droga , Método Duplo-Cego , Tolerância a Medicamentos , Feminino , Glaucoma de Ângulo Aberto/diagnóstico , Humanos , Pressão Intraocular , Masculino , Pessoa de Meia-Idade , Nitratos/administração & dosagem , Nitratos/química , Hipertensão Ocular/diagnóstico , Purinas/administração & dosagem , Purinas/química , Fatores de Tempo , Tonometria Ocular , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...