Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; : e0030424, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150268

RESUMO

Patients coinfected with respiratory syncytial virus (RSV) and bacteria have longer hospital stays, higher risk of intensive care unit admission, and worse outcomes. We describe a model of RSV line 19F/methicillin-resistant Staphylococcus aureus (MRSA) USA300 coinfection that does not impair viral clearance, but prior RSV infection enhances USA300 MRSA bacterial growth in the lung. The increased bacterial burden post-RSV correlates with reduced accumulation of neutrophils and impaired bacterial killing by alveolar macrophages. Surprisingly, reduced neutrophil accumulation is likely not explained by reductions in phagocyte-recruiting chemokines or alterations in proinflammatory cytokine production compared with mice infected with S. aureus alone. Neutrophils from RSV-infected mice retain their ability to migrate toward chemokine signals, and neutrophils from the RSV-infected lung are better able to phagocytize and kill S. aureus ex vivo on a per cell basis. In contrast, while alveolar macrophages could ingest USA300 post-RSV, intracellular bacterial killing was impaired. The RSV/S. aureus coinfected lung promotes a state of overactivation in neutrophils, demonstrated by increased production of reactive oxygen species (ROS) that can drive formation of neutrophil extracellular traps (NETs), resulting in cell death. Mice with RSV/S. aureus coinfection had increased extracellular DNA and protein in bronchoalveolar lavage fluid and histological evidence confirmed NETosis in vivo. Taken together, these data highlight that prior RSV infection can prime the overactivation of neutrophils leading to cell death that impairs neutrophil accumulation in the lung. Additionally, alveolar macrophage killing of bacteria is impaired post-RSV. Together, these defects enhance USA300 MRSA bacterial growth in the lung post-RSV.

2.
PLoS One ; 16(10): e0255309, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34618816

RESUMO

BACKGROUND: Type III interferon, or interferon lambda (IFNλ) is a crucial antiviral cytokine induced by influenza infection. While IFNλ is important for anti-viral host defense, published data demonstrate that IFNλ is pathogenic during influenza/bacterial super-infection. It is known that polymorphisms in specific IFNλ genes affect influenza responses, but the effect of IFNλ subtypes on bacterial super-infection is unknown. METHODS: Using an established model of influenza, Staphylococcus aureus super-infection, we studied IFNλ3-/- and control mice to model a physiologically relevant reduction in IFNλ and to address its role in super-infection. RESULTS: Surprisingly, IFNλ3-/- mice did not have significantly lower total IFNλ than co-housed controls, and displayed no change in viral or bacterial clearance. Importantly, both control and IFNλ3-/- mice displayed a positive correlation between viral burden and total IFNλ in the bronchoalveolar lavage during influenza/bacterial super-infection, suggesting that higher influenza viral burden drives a similar total IFNλ response regardless of IFNλ3 gene integrity. Interestingly, total IFNλ levels positively correlated with bacterial burden, while viral burden and bronchoalveolar lavage cellularity did not. CONCLUSIONS: These data suggest IFNλ2 can compensate for IFNλ3 to mount an effective antiviral and defense, revealing a functional redundancy in these highly similar IFNλ subtypes. Further, the IFNλ response to influenza, as opposed to changes in cellular inflammation or viral load, significantly correlates with susceptibility to bacterial super-infection. Moreover, the IFNλ response is regulated and involves redundant subtypes, suggesting it is of high importance to pulmonary pathogen defense.


Assuntos
Interferons/análise , Interferons/imunologia , Interleucinas/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Animais , Linhagem Celular , Coinfecção/imunologia , Coinfecção/microbiologia , Cães , Feminino , Interferons/genética , Interleucinas/genética , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae/patologia , Polimorfismo Genético/genética , Infecções Estafilocócicas/prevenção & controle , Superinfecção/imunologia , Superinfecção/microbiologia , Carga Viral/imunologia , Interferon lambda
3.
Front Immunol ; 11: 574027, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101299

RESUMO

Asthma is a highly prevalent, chronic respiratory disease that impacts millions of people worldwide and causes thousands of deaths every year. Asthmatics display different phenotypes with distinct genetic components, environmental causes, and immunopathologic signatures, and are broadly characterized into type 2-high or type 2-low (non-type 2) endotypes by linking clinical characteristics, steroid responsiveness, and molecular pathways. Regardless of asthma severity and adequate disease management, patients may experience acute exacerbations of symptoms and a loss of disease control, often triggered by respiratory infections. The interferon (IFN) family represents a group of cytokines that play a central role in the protection against and exacerbation of various infections and pathologies, including asthma. Type I and III IFNs in particular play an indispensable role in the host immune system to fight off pathogens, which seems to be altered in both pediatric and adult asthmatics. Impaired IFN production leaves asthmatics susceptible to infection and with uncontrolled type 2 immunity, promotes airway hyperresponsiveness (AHR), and inflammation which can lead to asthma exacerbations. However, IFN deficiency is not observed in all asthmatics, and alterations in IFN expression may be independent of type 2 immunity. In this review, we discuss the link between type I and III IFNs and asthma both in general and in specific contexts, including during viral infection, co-infection, and bacterial/fungal infection. We also highlight several studies which examine the potential role for type I and III IFNs as asthma-related therapies.


Assuntos
Asma/imunologia , Interferons/imunologia , Interferons/uso terapêutico , Asma/tratamento farmacológico , Asma/etiologia , Bactérias/patogenicidade , Fungos/patogenicidade , Humanos , Imunomodulação , Pulmão/imunologia , Infecções Respiratórias/complicações , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Vírus/patogenicidade
4.
Mucosal Immunol ; 12(5): 1231-1243, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31296910

RESUMO

Secondary bacterial pneumonia is a significant complication of severe influenza infection and Staphylococcus aureus and Streptococcus pneumoniae are the primary pathogens of interest. IL-22 promotes S. aureus and S. pneumoniae host defense in the lung through epithelial integrity and induction of antimicrobial peptides and is inhibited by the soluble decoy receptor IL-22-binding protein (IL-22BP). Little is known about the effect of the IL-22/IL-22BP regulatory pathway on lung infection, and it has not been studied in the setting of super-infection. We exposed wild-type and IL-22BP-/- mice to influenza A/PR/8/34 for 6 days prior to infection with S. aureus (USA300) S. pneumoniae. Super-infected IL-22BP-/- mice had decreased bacterial burden and improved survival compared to controls. IL-22BP-/- mice exhibited decreased inflammation, increased lipocalin 2 expression, and deletion of IL-22BP was associated with preserved epithelial barrier function with evidence of improved tight junction stability. Human bronchial epithelial cells treated with IL-22Fc showed evidence of improved tight junctions compared to untreated cells. This study revealed that IL-22BP-/- mice are protected during influenza, bacterial super-infection, suggesting that IL-22BP has a pro-inflammatory role and impairs epithelial barrier function likely through interaction with IL-22.


Assuntos
Infecções Bacterianas/metabolismo , Infecções Bacterianas/microbiologia , Proteínas de Transporte/metabolismo , Interleucinas/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Superinfecção , Animais , Infecções Bacterianas/genética , Infecções Bacterianas/patologia , Carga Bacteriana , Barreira Alveolocapilar/metabolismo , Barreira Alveolocapilar/patologia , Barreira Alveolocapilar/virologia , Proteínas de Transporte/genética , Modelos Animais de Doenças , Expressão Gênica , Interleucinas/genética , Contagem de Leucócitos , Masculino , Camundongos , Camundongos Knockout , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/patologia , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/patologia , Permeabilidade , Ligação Proteica , Staphylococcus aureus , Streptococcus pneumoniae , Junções Íntimas , Interleucina 22
5.
Viruses ; 11(6)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31159430

RESUMO

Influenza virus is among the most common causes of respiratory illness worldwide and can be complicated by secondary bacterial pneumonia, a frequent cause of mortality. When influenza virus infects the lung, the innate immune response is activated, and interferons and inflammatory mediators are released. This "cytokine storm" is thought to play a role in influenza-induced lung pathogenesis. Peroxisome proliferator-activated receptor gamma (PPARγ) is a member of the nuclear hormone receptor super-family. PPARγ has numerous functions including enhancing lipid and glucose metabolism and cellular differentiation and suppressing inflammation. Synthetic PPARγagonists (thiazolidinediones or glitazones) have been used clinically in the treatment of type II diabetes. Using data from the National Health and Nutrition Examination Survey (NHANES), diabetic participants taking rosiglitazone had an increased risk of mortality from influenza/pneumonia compared to those not taking the drug. We examined the effect of rosiglitazone treatment during influenza and secondary bacterial (Methicillin resistant Staphylococcus aureus) pneumonia in mice. We found decreased influenza viral burden, decreased numbers of neutrophils and macrophages in bronchoalveolar lavage, and decreased production of cytokines and chemokines in influenza infected, rosiglitazone-treated mice when compared to controls. However, rosiglitazone treatment compromised bacterial clearance during influenza-bacterial super-infection. Both human and mouse data suggest that rosiglitazone treatment worsens the outcome of influenza-associated pneumonia.


Assuntos
Infecções Bacterianas , Coinfecção/tratamento farmacológico , Inflamação/patologia , Influenza Humana , Rosiglitazona/efeitos adversos , Animais , Infecções Bacterianas/complicações , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/imunologia , Coinfecção/imunologia , Coinfecção/microbiologia , Coinfecção/virologia , Citocinas/efeitos dos fármacos , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/microbiologia , Diabetes Mellitus Tipo 2/virologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/genética , Inflamação/microbiologia , Inflamação/virologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/complicações , Influenza Humana/tratamento farmacológico , Influenza Humana/imunologia , Interferons/efeitos dos fármacos , Interferons/metabolismo , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Pulmão/virologia , Masculino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/imunologia , Camundongos , PPAR gama/agonistas , Rosiglitazona/farmacologia , Transdução de Sinais/efeitos dos fármacos , Carga Viral/efeitos dos fármacos
6.
Clin Microbiol Rev ; 32(3)2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31142498

RESUMO

Community-acquired pneumonia (CAP) is a leading cause of morbidity and mortality worldwide. Despite broad literature including basic and translational scientific studies, many gaps in our understanding of host-pathogen interactions remain. In this review, pathogen virulence factors that drive lung infection and injury are discussed in relation to their associated host immune pathways. CAP epidemiology is considered, with a focus on Staphylococcus aureus and Streptococcus pneumoniae as primary pathogens. Bacterial factors involved in nasal colonization and subsequent virulence are illuminated. A particular emphasis is placed on bacterial pore-forming toxins, host cell death, and inflammasome activation. Identified host-pathogen interactions are then examined by linking pathogen factors to aberrant host response pathways in the context of acute lung injury in both primary and secondary infection. While much is known regarding bacterial virulence and host immune responses, CAP management is still limited to mostly supportive care. It is likely that improvements in therapy will be derived from combinatorial targeting of both pathogen virulence factors and host immunomodulation.


Assuntos
Infecções Comunitárias Adquiridas/imunologia , Infecções Comunitárias Adquiridas/microbiologia , Interações Hospedeiro-Patógeno/imunologia , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/microbiologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Humanos , Staphylococcus aureus/patogenicidade , Staphylococcus aureus/fisiologia , Streptococcus pneumoniae/patogenicidade , Streptococcus pneumoniae/fisiologia
7.
Infect Immun ; 87(5)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30804099

RESUMO

Influenza kills 30,000 to 40,000 people each year in the United States and causes 10 times as many hospitalizations. A common complication of influenza is bacterial superinfection, which exacerbates morbidity and mortality from the viral illness. Recently, methicillin-resistant Staphylococcus aureus (MRSA) has emerged as the dominant pathogen found in bacterial superinfection, with Streptococcus pneumoniae a close second. However, clinicians have few tools to treat bacterial superinfection. Current therapy for influenza/bacterial superinfection consists of treating the underlying influenza infection and adding various antibiotics, which are increasingly rendered ineffective by rising bacterial multidrug resistance. Several groups have recently proposed the use of the antiviral cytokine interferon lambda (IFN-λ) as a therapeutic for influenza, as administration of pegylated IFN-λ improves lung function and survival during influenza by reducing the overabundance of neutrophils in the lung. However, our data suggest that therapeutic IFN-λ impairs bacterial clearance during influenza superinfection. Specifically, mice treated with an adenoviral vector to overexpress IFN-λ during influenza infection exhibited increased bacterial burdens upon superinfection with either MRSA or S. pneumoniae Surprisingly, adhesion molecule expression, antimicrobial peptide production, and reactive oxygen species activity were not altered by IFN-λ treatment. However, neutrophil uptake of MRSA and S. pneumoniae was significantly reduced upon IFN-λ treatment during influenza superinfection in vivo Together, these data support the theory that IFN-λ decreases neutrophil motility and function in the influenza-infected lung, which increases the bacterial burden during superinfection. Thus, we believe that caution should be exercised in the possible future use of IFN-λ as therapy for influenza.


Assuntos
Antivirais/uso terapêutico , Influenza Humana/complicações , Influenza Humana/tratamento farmacológico , Interferons/uso terapêutico , Staphylococcus aureus/efeitos dos fármacos , Streptococcus pneumoniae/efeitos dos fármacos , Superinfecção/tratamento farmacológico , Animais , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infecções Estafilocócicas/patologia , Superinfecção/etiologia , Estados Unidos
8.
Front Immunol ; 9: 2151, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30337919

RESUMO

Influenza is a common respiratory virus that infects between 5 and 20% of the US population and results in 30,000 deaths annually. A primary cause of influenza-associated death is secondary bacterial pneumonia. We have previously shown that influenza induces type I interferon (IFN)-mediated inhibition of Type 17 immune responses, resulting in exacerbation of bacterial burden during influenza and Staphylococcus aureus super-infection. In this study, we investigated the role of STAT2 signaling during influenza and influenza-bacterial super-infection in mice. Influenza-infected STAT2-/- mice had increased morbidity, viral burden, and inflammation when compared to wild-type mice. Despite an exaggerated inflammatory response to influenza infection, we found increased bacterial control and survival in STAT2 deficient mice during influenza-MRSA super-infection compared to controls. Further, we found that increased bacterial clearance during influenza-MRSA super-infection is not due to rescue of Type 17 immunity. Absence of STAT2 was associated with increased accumulation of M1, M2 and M1/M2 co-expressing macrophages during influenza-bacterial super-infection. Neutralization of IFNγ (M1) and/or Arginase 1 (M2) impaired bacterial clearance in Stat2-/- mice during super-infection, demonstrating that pulmonary macrophages expressing a mixed M1/M2 phenotype promote bacterial control during influenza-bacterial super-infection. Together, these results suggest that the STAT2 signaling is involved in suppressing macrophage activation and bacterial control during influenza-bacterial super-infection. Further, these studies reveal novel mechanistic insight into the roles of macrophage subpopulations in pulmonary host defense.


Assuntos
Influenza Humana/imunologia , Macrófagos Alveolares/imunologia , Pneumonia Estafilocócica/imunologia , Fator de Transcrição STAT2/metabolismo , Superinfecção/imunologia , Animais , Transplante de Medula Óssea , Embrião de Galinha , Modelos Animais de Doenças , Feminino , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/diagnóstico , Influenza Humana/microbiologia , Influenza Humana/mortalidade , Ativação de Macrófagos/imunologia , Macrófagos Alveolares/metabolismo , Masculino , Células-Tronco Mesenquimais , Staphylococcus aureus Resistente à Meticilina/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pneumonia Estafilocócica/diagnóstico , Pneumonia Estafilocócica/microbiologia , Pneumonia Estafilocócica/mortalidade , Cultura Primária de Células , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/imunologia , Índice de Gravidade de Doença , Transdução de Sinais/imunologia , Superinfecção/diagnóstico , Superinfecção/microbiologia , Superinfecção/mortalidade , Quimeras de Transplante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA